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Abstract

There has been recent successes in learning the board games Go, chess and shogi most no-
tably by the algorithm introduced as AlphaZero. Subsequently, independent researchers
and enthusiasts partially replicated the achievement in the aforementioned domains.
Moreover, different board game types have been evaluated by either exclusively using
reinforcement, supervised learning or a mixture between the two. The main hindrance
for achieving good performance for complex games is the data requirement for rein-
forcement learning and the associated hardware requirements. In this work we provide a
throughout overview in applying reinforcement learning for the chess variant crazyhouse
while aiming to reduce the amount of required data to achieve significant progress. Ad-
ditionally, we present an extended input representation to support additional seven chess
variants and evaluate whether it is advantageous to train a model for multiple variants at
once. Lastly, the playing behaviour after 50 model updates in the reinforcement learn-
ing loop is evaluated in 100 matches between the latest development version of the strong
open source chess engine Stockfish. We demonstrate that CrazyAra surpassed Stockfish
in crazyhouse (61 wins, 3 draws, 36 defeats) by using one million self-play games which
were generated in 18 days using three V100 GPUs when starting with a network trained
on human games.

Keywords: Reinforcement Learning, Crazyhouse, Chess, Deep Learning, Monte-Carlo
Tree Search




Zusammenfassung

Kiirzlich wurden malgebliche Erfolge beim automatisierten Erlernen der Brettspiele Go,
Schach und Shogi, durch den als AlphaZero eingefiihrten Algorithmus erzielt. Anschliel3-
end wurden die Ergebnisse von unabhingigen Forschern und Enthusiasten in den zu-
vor genannten Spielen teilweise repliziert. Dariiber hinaus wurde, entweder unter aus-
schlielSlicher Nutzung von Reinforcement Learning oder einer Mischung mit Supervised
Learning, die Anwendung auf weitere Brettspieltypen ausgeweitet. Das grof3te Hindernis
fiir ein erfolgreiches Reinforcement Learning bei komplexen Spielen ist die bendtigte Da-
tenmenge und den damit verbundenen Hardwareanforderungen. In dieser Arbeit geben
wir einen umfassenden Uberblick zur Anwendung von Reinforcement Learning fiir die
Schachvariante Crazyhouse mit dem Ziel, bei geringer gegebener Datenmenge, signifi-
kante Fortschritte zu erzielen. Aullerdem prasentieren wir eine erweiterte Eingabedar-
stellung zur Unterstiitzung von sieben weiteren Schachvarianten und bewerten, ob es
vorteilhaft ist, ein Modell gleichzeitig fiir mehrere Varianten zu trainieren. Abschlief3end
wird das Spielverhalten nach dem 50. Modell-Update des Reinforcement Learning Loops
in 100 Partien zwischen der aktuellen Entwicklungsversion der starken Open-Source-
Schach-engine Stockfish bewertet. Wir zeigen, dass CrazyAra, Stockfish in Crazyhouse
aktuell iiberlegen ist (61 Siege, 3 Remis und 36 Niederlagen). Ausgehend von einem trai-
nierten Netzwerk durch menschliche Partien wurden hierfiir eine Millionen Partien in 18
Tagen mittels drei V100-GPUs generiert.

Stichworte: Reinforcement Learning, Crazyhouse, Chess, Deep Learning, Monte-Carlo
Tree Search
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1 Introduction

1.1 Motivation

The chess variant crazyhouse introduces the dropping rule into regular chess and enjoys
increasing popularity in recent years, primarily on online chess servers. As the single
player version of bughouse, it features a higher move complexity than regular chess. In
previous work [5, 6] about supervised learning for crazyhouse it became apparent that
neural networks are well suited for learning this complex variant. Now we extend the
supervised learning into the reinforcement learning domain.

Crazyhouse consists of certain criteria which make it particular suitable for reinforcement
learning and for training with neural networks: the games are usually much shorter in
terms of game length and small mistakes can often be directly exploited. Furthermore, the
element of the endgame is avoided because pieces never fully leave the board. Therefore,
no crazyhouse tablebases exist or are required. Games almost always end with a decisive

result in the form of a forced checkmating sequence and only rarely in a draw by perpetual
check.

Additionally, we aim to improve data efficiency by validating new proposed ideas after
the publications on AlphaZero as well as contributing new methods.

1.2 Problem Formulation

Neural networks in combination with MCTS have been utilized in many complex board
games such as chess, shogi and Go successfully. The chess variant crazyhouse as a hy-
brid between classical chess and shogi inherits many properties from both game types.
Due to the strong tactical aspect, the highly developed open source engine Stockfish has




surpassed the playing strength of human expert players'. However, the high branching
factor severely limits its search space in depth.

We formulate three research questions for this work. First, we are going to approach
the possibility of neural networks playing on the same or higher level than Stockfish.
We approach this question by employing reinforcement starting from a neural network
which was trained on human expert games similar to the AlphaGo [32] project. Second,
the crazyhouse variant has not been as extensively studied as classical chess and the first
move advantage by White is known to provide the first player a greater edge than for
classical chess. Thus, we are going to provide some information in this area by analyzing
a list of commonly played crazyhouse openings over the course of reinforcement learning.
Third, in the case of AlphaZero, neural networks have only been trained on a single game
type separately but not on multiple games at once with a single model. Having a single
model for multiple game types is overall more desirable. We evaluate the possibility of
reaching this goal by comparing the performance of training different models on three
chess variants individually and a single model on the combined data set.

1.3 Outline

This thesis is structured as follows: first, we revisit the overall optimization objective, the
core technical parts of the MCTS algorithm and the neural network architecture which
will be used in the remaining work. Next, we go over related work, specifically for chess
and crazyhouse, as well as publications which build upon or analyzed the AlphaZero algo-
rithm. Subsequently, we extend the input output representation of the neural network to
seven other commonly played chess variants and evaluate the practicability of effectively
training multiple variants with the same model.

Later, in the main part of this work, we describe the reinforcement learning setup for
the variant crazyhouse which includes both a summary of hyper-parameters as well as a
specification of hardware and software. In an empirical evaluation we inspect the playing
strength progression over the course of reinforcement learning as well as the playing
behaviour in the opening stage. The thesis concludes with a 100 game match-up with
Multi-Variant-Stockfish, the strongest classical engine for crazyhouse. Lastly, we give a
brief summary and outlook for potential future work.

'https://github.com/ddugovic/Stockfish/issues/147, accessed 2019-12-30
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2 Background

This chapter summarizes the technical aspect of the MCTS algorithm as introduced in
[32] and later refined in [30], [29] and [6]. Next, crazyhouse is formalized as a rein-
forcement learning problem and compared with a supervised learning approach. Lastly,
the convolutional network architecture is given which will be used in the rest of the work.

2.1 General Concept

Be it for supervised or reinforcement learning, the overall optimization objective can be
defined as an actor critic loss function which consists of a combined value and policy loss:

l=a(z—v)? =7l logp + ¢/ 2.1)

The parameter 2 describes the target value, v the predicted value, 7 the target policy
distribution and p the predicted policy by the neural network fy. The hyperparameter «
is used to define a custom weighting between the value and policy loss and ¢ acts as a Lo
regularization constant of the model parameters 6.

It is typically realized by a shared neural network fy with two output heads and optimized
by a variant of stochastic gradient descent, for instance by Stochastic Gradient Descent
with Neterov’'s Momentum (NAG; [2]).




2.2 Monte-Carlo Tree Search

While in games like Go, Monte-Carlo Tree Search (MCTS) has been the algorithm of
choice for a long time [13], for games with a more tactical nature, like chess and shogi,
mini-max search with a8-pruning, as popularized by DeepBlue [3], has dominated the
engine scene

Monte-Carlo based approaches estimate the value function by averaging returns over a
series of rollouts. An essential break-through was achieved in AlphaGo [32] by integrat-
ing a deep neural network fy into MCTS, in the case of the Upper Confidence Bounds
for Trees algorithm (UCT; [21]). The main concept is to sample promising moves more
often and to find a balance between exploration and exploitation with a variable depth
search. At each state s; for every time step ¢ a new action «a; is selected according to
the UCT-formula (2.2) until either a new unexplored state s* or a terminal node s is
reached.

a; = argmax,(Q(s;,a) + U(sy,a)) where U(s,a) = cpuetP(s, a)m (2.2)

The new unexplored state s* is expanded and evaluated by the neural network fy. Next,
the predicted policy P(s, a;) is assigned to every possible action a; and the state evaluation
v* is back-propagated along the visited search path. In case of a terminal state s7, the
constant evaluation of either —1, +1 or 0 is used instead. The value evaluation v* is
multiplied by —1 after every step and updates the respective Q-values by a simple moving
average (SMA):

1
Q'(s¢,a) = Q(s¢,a) + - [v* — Q(s¢, a)] (2.3)
Unvisited nodes are treated as losses and assigned a value of —1.

Next, we briefly go over the MCTS hyperparameters which refer to [30] and [6].

2.2.1 Default Parameter Settings

Weighting constant cpyet  The exploration constant cpyc acts as a weighting parameter
between Q- and U-values and is scaled according to the number of visits of a particular
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node: S N(s.a) )
$,a) + Cpuct-base T+
Cpuct(s) = log = c bPUCt = =+ Cpuct-init (2.49)
pllCt- ase

where we chose a cpycrbase Of 19,652 and cpyct-inic Of 2.5 as in [6].

Move temperature 7  After a given number of simulations N (so) = >, N(s¢, b) has been
reached, the new target policy 7(alsp) for reinforcement learning is constructed based
on the number of visits for all direct child nodes. For move selection an exponential
temperature scaling factor 7 is applied on the policy 7(alsp) and the next action a is
sampled from 7/(also):

m(alsg) = M 7 (also) = M
2N (s0,8) ZbN(SO,b)%'

A temperature value of 7 = 0 corresponds to applying the argmax operator.

(2.5)

Exploration noise Dir(a) To encourage the exploration of moves outside of the initial
neural network policy p during reinforcement learning, we apply a Dirichlet noise Dir(«)
with a factor € of 25 % and o = 0.2 on the policy distribution of the root node pgo.

Pso = (1 — €) Psy + € Dir(a) (2.6)

We notice that for tournament play, adding noise on the neural network policy p usu-
ally increases the activation for blunder moves. Therefore, we instead increase overall
exploration by applying an exponetial scaling with a temperature value 7 > 1:

il

p(s,a)

——, 2.7)
Zb p(S, b)

p'(als) =

3=

Mini-Batch Size The mini-batch size defines how many positions are buffered and allo-
cated for neural network inference. Larger mini-batch sizes usually improve GPU utiliza-
tion at the cost of a lower node statistic update frequency. The original proposed value
mini-batch size for AlphaZero [29] was set to eight.

1



Virtual Loss The node selection formula (2.2) behaves deterministic. To enable the
allocation of mini-batch sizes > 1 and multi-threaded search, we temporarily affect all
visited nodes by a virtual loss of 3 which emulates three total extra losses on the specific
nodes. After the update of the Q-values, the effect of the virtual loss is reverted again.

Centipawn Conversion To allow a better comparison with traditional search engines,
we convert the Q-value evaluation into the centipawn (cp) metric as in [6]:

. v 1 —|v
= —— - 10
P v & log A\’

(2.8)

where )\ is set to 1.2.

Transposition Table We also make use of transposition tables as described in [6]: A
pointer to every node within the search tree is stored in a hash-table to allow copying
the value evaluation and policy prediction without requesting the neural network on the
same position multiple times.

Time dependent Search Furthermore, we reuse our basic time management system
from [6] in order to conduct tournament matches at arbitrary time controls and on dif-
ferent hardware. The system determines a default constant move time for the first 40
moves and later switches to a proportional time management.

2.2.2 Comparison with Minimax Search and a5-Pruning

MCTS comprises a different set of strength and weakness compared to minimax search
with af-pruning. The main advantage of MCTS when coupled with a neural network
policy is its ability to select its nodes more sensibly and possibly reach higher depth than
traditional engines which generate more than thousand times more nodes. However, the
policy might also contain blind spots for certain moves which becomes specially apparent
at tactical sequences. Multi-Variant-Stockfish, as a representative of minimax search, has
a much lower risk at miss-evaluating low depth tactical sequences. The evaluation speed
of Stockfish for a single position is significantly faster and relies among others techniques
on piece-square tables. To handle the high move complexity of crazyhouse, it further
employs multiple search heuristics such as quiesence search, razoring, futility pruning,
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null move pruning, probcut, internal iterative deepening, SEE pruning and LMR history
pruning. It does not contain an explicit policy function and uses the min-max operator
rather than averaging for its evaluations. As a result the evaluation progression of a game
is usually not as smooth as for MCTS engines. MCTS search is capable of reusing large
parts of the previous search tree if the game variation follows the expected principal
variation whereas a/3-engines need to store evaluations in the hash table for future turns.

2.3 Crazyhouse as a Reinforcement Learning Problem

Crazyhouse, as well as other two-player board games like chess, Go, shogi and Connect-
Four, is a well defined environment which has a discrete action space with a fully ob-
servable discrete state space. In consequence, it is well suited to be directly converted
to a Markov-Decision-Process (MDP) where each Markovian state represents the current
board position, as further described in Chapter 4. Despite the higher move complexity
compared to classical chess, the average game length is reduced and the game results
tend to be more decisive. Additionally, the environment can be perfectly simulated on
low hardware and environment interactions are simulated cheaply.

The general reinforcement learning problem can be formalized as to maximize the total
discounted reward. For MDPs the goal is to find the optimal value function v, (s) or rather
state action values ¢ (s, a) according to the Bellman equations of optimality [34]:

Vi (s) = m(?pr(s', r|s,a) [r+ v (s")] , (2.9)
g(s,a) = _p(s',7]s,a) [7" +ymax g.(s’,a’) (2.10)
s'r “

In this work, crazyhouse is represented as a model-based, actor-critic problem with the
goal to find the optimal policy and value function in a mini-max game where the value
return is flipped on every ply in the search tree. No discount is used (y = 1) and the
rewards are sparse and binary in the form of terminal nodes. To allow a better approx-
imation of the actual state value, we average the state value estimate provided by the
neural network estimates and the terminal returns.

13



2.4 Supervised Learning vs Reinforcement Learning

Learning crazyhouse in a supervised learning and reinforcement learning setting differs
in several ways which are now discussed in more detail: in supervised learning only
sparse labels are available to learn the policy and value function. The policy target is a
one-hot-encoded vector which replicates the move that was played in a given position.
By providing different target moves at varying frequencies, the model will converge to a
distribution which represents all given targets with the goal to generalize well to unseen
samples. The policy is usually optimized, using the sparse version of the cross-entropy
loss.

The value target is also binary or threefold, if a draw result is possible. We assign every
position as winning (+1), drawn (0) or losing (—1) depending on the final game result,
regardless of the game progression. The value output of the neural network is clipped
into the numerical range of e.g. [—1, +1] using a hyperbolic tangent function or a sigmoid
function if a range of [0, 1] is used instead. The value loss is formalized as a mean squared
error. In supervised learning there are usually a broad diverse number of different players
which reduces the chance of over-fitting and missing key concepts.

In reinforcement learning we deal with a new dimension of complexity. Mainly finding the
right trade-off between exploration and exploitation because the reinforcement learning
agent is at risk of missing out important lines. Generating your own samples as the new
optimizing targets can also have some bad recursive effect or lead to forgetting of general
knowledge. For example, if only the winning progression against the previous network is
observed during training, you might end up in a rock - paper - scissors scenario. In this
case, the new network learns to exploit the weaknesses of the previous iteration without
generalizing and increasing in overall playing strength.

In reinforcement learning the policy target is the node visit distribution after MCTS
search. The cross entropy loss is therefore calculated using the full distribution. More-
over, you also gather the Q-values as an additional feature which is normally unavailable
in supervised learning.

Reinforcement learning, on the other hand, also allows generating an infinite amount of
training samples in theory and an automatic re-calibration of states spaces which have
been previously accessed incorrectly. Nevertheless, there is no guarantee for continuous
progress and due to missing any external influence there is also the risk of divergence.

14



2.5 Convolutional Neural Networks

Convolutional neural networks (CNNs) [12, 23] are primarily used in the computer vision
or natural language processing domain and characterized by employing the space and
shift invariant convolution operation. In the context of chess, the board state can be
encoded as an 8 x 8 multi-channel image and essentially treated as a vision problem.
The original AlphaZero network architecture [29], as shown in Table 2.2, belongs to the
residual networks as popularized by [16]. Moreover, it is a shared neural network with
a joint residual tower followed by a value (Table 2.3) and policy head (Table 2.4) and
can be characterized by a large parameter count similar to WideResnet [42]. In contrast
to common CNN architectures, local pooling layers are avoided and the spatial size is
preserved.

The final playing strength of the model coupled with MCTS is determined by multiple
factors which include the achieved performance on the validation set, the inference speed
and memory consumption. For the subsequent chapters we prefer the RISEv2 mobile
architecture (Table 2.1) as introduced in [6] over the original AlphaZero architecture.
RISEv2 mobile combines the residual block of MobileNet v2 [28] with a linearly increasing
number of filter like in the pyramid-architecture [15] as well as global squeeze excitation
layers (SE; [17]). According to Table 2.5, RISEv2 mobile achieved similar performance
on the lichess.org crazyhouse data set while having a fifth of the number of parameters
and yielding more than two times evaluations per second on GPU and three times more
evaluations on CPU (Figure 2.1). The median number of evaluation position per second,
commonly referred as nodes per seconds (NPS), has been measured for three seconds on
fifteen benchmark positions on three different backends.
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Table 2.1: RISEv2 mobile / 8-value-policy-map-mobile architecture: 13 x 256 as
presented in [6]

RISEv2 mobile

Layer Name Output Size 40-Layer
conv@

batchnorme 256 x 8 x 8 conv 3 x 3, 256
relue

res_conve_x
res_batchnormfd_x

res_relu@_x

res_convi_x
res_batchnormi_x 256 x 8 X 8

res_relul_x

res_conv2_x
res_batchnorm2_x
shortcut + output

value head policy head 1 5184 Table 2.3 Table 2.4

(SE-Block, r = 2)
convl1x 1,128+ 64z
dconv 3 x 3,128 + 642 | <13
conv 1 x 1, 256

Table 2.2: AlphaZero’s network architecture: 19 x 256 as shown in [6]

Layer Name Output Size AlphaZero Resnet

39-layer
conv@
batchnorm@ 256 x 8 X 8 conv 3 x 3, 256
relu@

res_convo_x
res_batchnormd_x

res_relu@_x
conv 3 x 3, 256
res_convil_x 256 x 8 x 8 %19
conv 3 x 3, 256
res_batchnormil_x

shortcut + output
res_relul_x

value head policy head 1 5184 Table 2.3  Table 2.4
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Table 2.3: Value head for different architectures with n-channels as shown in [6]

Layer Name Output Size Value Head N-channels

convo
batchnorme nx8x8 convlx1l, n
relu@

flatten®
fully_connected® 256 fc, 256
reluil

fully_connected1

tanho 1 fe, 1

Table 2.4: Policy head type policy-map as shown in [6]

Layer Name Output Size Policy Map

conve
batchnorm@ 256 x 8 x 8 conv 3 x 3, 256
relu@

conv
flatteno 5184 conv 3 x 3, 81
softmaxo

Table 2.5: Performance metrics for different models on the lichess.org
crazyhouse validation set, as shown in [6]

Validation Metrics AlphaZero 1'9 x 256 RISEV2. 13 x 256 .
8-value-policy-map  8-value-policy-map-mobile

Combined Loss 1.1964 1.1925

Policy Loss 1.2008 1.1968

Value Loss 0.7577 0.7619

Policy Accuracy 0.6023 0.6032

Value Accuracy Sign 0.6899 0.6889

Model Parameters 23,288,576 4,820,113

Disc Space 95.1 MB 19.4 MB

17



RISEv2: 13x256

AlphaZero: 19x256

RISEv2: 13x256

AlphaZero: 19x256
BN TensorRT-5.1.5.0

BN CUDA 10.1, cuDNN 7.5.1.10
I Intel MKL 20190502

RISEv2: 13x256 I

AlphaZero: 19x256 |

0 2000 4000 6000 8000
Nodes per Second

(a) Batch size 8

RISEv2: 13x256

AlphaZero: 19x256

RISEv2: 13x256

AlphaZero: 19x256

RISEv2: 13x256 I
AlphaZero: 19x256 |

0 2000 4000 6000 8000
Nodes per Second
(b) Batch size 16

Figure 2.1: Seed comparison between AlphaZero’s 19x256 network architecture
and the RISEv2 13x256 architecture, measured using CrazyAra 0.7.0
(MXNet 1.6.1, GTX 1080ti + AMD® Ryzen 7 1700 eight-core processor
and for IntelMKL: Intel® Core™ i5-8250U CPU @ 1.60GHz) on 15
benchmark positions




3 Related Work

This section provides an overview of relevant work in the field of chess as well as achieve-
ments in other board games before and after the publications on AlphaZero [30].

An initial success of neural network based evaluation functions was achieved by Ger-
ald Tesauro and his Gammon playing program called TD-Gammon [35] which learnt to
play slightly below top level human players after generating 1,500,000 self-play Gammon
games.

At a similar time as AlphaGo [31], the Go playing program named darkforest [37]
was developed by Facebook and used a deep convolutional neural network with a pure
pattern-matching approach. Later for darkfmcts3 [37], a MCTS search engine was added
and the program achieved the playing strength of an advanced amateur Go player. Next,
followed the publications by DeepMind on AlphaGo [31], and its successors AlphaGoZero
[32] and AlphaZero [30] which learnt the board games Go, chess and shogi without prior
human knowledge.

3.1 Neural Networks in Chess

The first successful attempts of employing neural networks in the game of chess, as in
the programs Giraffe [22] and DeepChess [7], have been using classical fully connected
feed forward networks and usually made use of supplementary hand-crafted feature in-
puts. If additionally reinforcement learning was used, then programs like KnightCap [1]
and Meep [39] relied on Temporal-Difference (TD) learning for adjusting their set of
parameters.

For the game variant crazyhouse as well classical chess, suicide chess and atomic chess, in
the work by Droste and Fiirnkranz [8] the piece value tables were learnt by applying TD
learning in a reinforcement learning setting. They adapted the open-source af-search
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engine Sunsetter! for their research and demonstrated an improvement over the original
values both for the Sunsetter and Deep Sjeng? engine (version 11.2). The open source
engine Stockfish had not been extended to Multi-Variant-Stockfish at the time of publica-
tion yet. In contrast to learning specific heuristic value parameters, CrazyAra assesses a
board position exclusively through a deep convolutional neural network. This facilitates
capturing the element of initiative which plays a major role in the crayzhouse variant.

As a collaborative open source project with the goal to replicate AlphaZero for Go, Gian-
Carlo Pascutto founded the Leela Zero® software project in 2017. The project was later
forked by Gary Linscott in 2018 and renamed into Leela Chess Zero* to address the game
of chess in a similar manner. Subsequently, Alexander Lyashuk and others fully rewrote
the engine and abbreviated the program name into Lc0°. LcO won the Superfinal against
Stockfish in season 15° of the Top Chess Engine Championship (TCEC).

In 2019, Gordon Chi evaluated the performance of deep residual networks in a crazy-
house playing program SixtyFourEngine [5]. Moreover, Czech et al. demonstrated with
CrazyAra 0.6.0 [6] the possibility of reaching a playing level above human expert strength
while only relying on human games in a supervised learning setting.

3.2 Neural Networks in other Bord Games

The game of Go as well as simple game types such as Connect-Four and Othello attracted
most attention in academic research. The publications in this area focused on either
replicating the results by DeepMind, studying the effects for different hyper-parameter
values or proposing modification to the default setup.

The work by Wang et al. [40] studied the effect of twelve different AlphaZero hyper-
parameters (e. g. learning rate, cpuer, MCTS rollouts .. .) under the three objectives: train-
ing loss, time-cost and playing strength. Their experiments were done on the 6 x6 Othello
game and used the python-only open-source implementation AlphaZeroGeneral” .

'http://sunsetter.sourceforge.net/, accessed 2019-12-29
2https://www.sjeng.org/indexold.html, accessed 2019-12-29
*https://zero.sjeng.org/, accessed 2019-12-30
*https://github.com/glinscott/leela-chess, accessed 2019-12-30
*https://github.com/LeelaChessZero/1c®, accessed 2019-12-30
®https://tcec-chess.com/articles/Sufi_15_-_Sadler.pdf, accessed 2019-12-30
"https://github.com/suragnair/alpha-zero-general, accessed 2019-12-30
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During a successful attempt of replicating AlphaZero for the game Connect-Four, the re-
searchers Abrams et al. proposed, inter alia, using a mixture of the ()-value and the final
game result z as the new value target®. The new technique introduces a mixture param-
eter, called the Q-value-ratio, as a new hyper-parameter. This can be seen as combining a
boots-trap sample with a Monte-Carlo return and has been shown to potentially speed-up
learning by reducing variance at the cost of introducing bias [34].

Morandin et al. developed the Go playing program, Sensible Artificial Intelligence (SAI)
[26], with the goal to improve the playing behaviour under disadvantageous positions.
They changed the default value target into modelling the winrate as a sigmoid function
of the bonus points in respect thereof. Their evaluation was conducted on a smaller 9 x 9
Go board.

The main run for Go by DeepMind [29] lasted several days and used 5,000 Tensor pro-
cessing units (TPUs) resulting in about 41 TPU-years. A Facebook research group repli-
cated this performance by using 2,000 V100 GPUs for about 14 days. The correspond-
ing program ELF OpenGo [38] was open-sourced and its playing strength was verified
with a 20 : 0 score against global top professional Go players. Later in 2019, David
J. Wu claimed to have achieved a 50x reduction in computation and to have surpassed
the playing strength of both ELF OpenGo and Leela Zero. His open-sourced playing pro-
gram KataGo was trained on 27 V100 GPUs for 19 days, totalling in about 1.4 GPU-years.
His proposed improvements include non-domain-specific as well as domain-specific tech-
niques: Playout Cap Randomization, Forced Playouts with Policy Target Pruning, Global
Pooling, Auxiliary Policy Targets and Auxiliary Ownership and Score Targets.

His game randomization configuration which samples the first moves directly from the
raw network policy, influenced the reinforcement learning randomization setting of this
work as described in Section 5.2.

8https ://medium.com/oracledevs/lessons-from-alphazero-part-4-improving-the-training-target-6efba2e71628,

accessed 2019-12-30
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4 Multi Chess Variant Training

This chapter introduces several chess variants and their main features with the idea of
training a single neural network on multiple variants at once. Consequently, the former
input and output representation for crazyhouse has to be extended.

Many chess variants have been developed for the game of chess. While some fundamen-
tally modify the rules of chess and the overall objective, others keep most of the classical
chess rules. To guarantee the best conditions for multi variant training, the three vari-
ants chess960, King of the Hill and Three-check were chosen which stay close to classical
chess rules, share the same legal move generation and a similar starting position.

4.1 Chess Variants

Chess960 also known as Fischer Random Chess, invented by former world champion
Bobby Fischer, is not a different variant in itself but a meta-variant which can be applied
to almost any chess variant. It follows the same rules as the defined chess variant, for
instance classical chess, but is defined by using one of 960 unique random starting po-
sitions where the bishop pair remains on opposite-color squares and the king is placed
in between the two rooks. Castling remains possible on either king or queen side if the
intercepting pieces have been moved.

The King of the Hill (koth) chess variant retains all regular chess rules with the addition
of winning the game if the king enters one of the four central squares.

Three-Check uses the same rules set as classical chess but allows winning either by check-
mate or putting the king of the opponent into check for the third time. Giving a check
with multiple pieces at once, for instance due to a discovered check, is counted as a single
check.
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4.1.1 Data Set

As in previous work [6], the training data originates from the lichess.org database [36].
The Elo distributions are slightly different among each variant, therefore we chose all
available games from August 2013 until August 2018 in which both players belong to
the top ten percentile of the respective cumulative Elo distribution. This results in an
Elo threshold of 1950 Elo for Chess960, 1925 Elo for King of the Hill and 1900 Elo for
Three-Check. The games from April 2018 and August 2018 were withhold for validation
and testing.

4.2 Unified Representation for Multiple Chess Variants

The extended input and output representation for multiple variants is based on [6] and
does not encode a move history. All features are re-scaled to be in the range [0, 1] by
using the following soft maximum boundary constants: 16 maximum pocket pieces for
a single piece-type, 500 maximum moves and 50 as the maximum no progress counter.
Table 4.1 summarizes the input representation which supports all nine chess variants on
lichess.org. Four additional 8 x 8 planes are used to describe the remaining checks to win
in the Three-check variant and eight 8 x 8 planes present the current active variant in
one-hot encoded form. A single plane provides information whether the game originated
from a 960 starting position and hence uses modified castling rules.

For the policy description, as shown in Table 2.4, we reuse the policy map representation
of crazyhouse from [6] and add three additional planes to allow king promotion moves.
King promotion is legal and commonly played in the antichess variant. We favor the
policy map over the plane vector representation due to generally resulting in a lower
policy loss [6].

To ensure that the information of the current active variant is sufficiently recognized,
the last nine planes of the input representation was given as an additional input to each
residual block and added to the final 256 feature plane representation before the value
and policy head.
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Table 4.1: Multi variant plane representation. The features are encoded as a
binary maps and features with * are single values set over the entire
8x 8 plane. 13 additional planes account for describing the current
variant as well as the amount of checks given. Entries in bold vary
from the default crazyhouse representation.

Feature Planes Type Comment
P1 piece 6 bool order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN, KING}
P2 piece 6 bool order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN, KING}
Repetitions” 2 bool indicates how often the board positions has occurred
P1 pocket count” 5 int  order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN}
P2 pocket count” 5 int  order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN}
P1 Promoted Pawns 1 bool indicates pieces which have been promoted
P2 Promoted Pawns 1 bool indicates pieces which have been promoted
En-passant square 1 bool indicates the square where en-passant capture is possible
Colour” 1 bool all zeros for black and all ones for white
Total move count” 1 int  sets the full move count (FEN notation)
P1 castling” 2 bool binary plane, order: {KING_SIDE, QUEEN_SIDE}
P2 castling” 2 bool binary plane, order: {KING_SIDE, QUEEN_SIDE}
No-progress count” 1 int  sets the no progress counter (FEN halfmove clock)
P1 remaining-checks” 2 bool 3check variant: After 3 checks by one player the game ends
P2 remaining-checks” 2 bool 3check variant: After 3 checks by one player the game ends
is960 1 bool indicates if game uses a randomized starting position

. one-hot, order: {chess, crazyhouse, kingofthehill,
Variant 8 bool

3check, giveaway, atomic, horde, racingkings}

Total 47
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Table 4.2: Policy map representation for multi variants. Entries in bold vary from
the default crazyhouse representation

Feature Planes Comment

Queen moves 56 direction order: {N, NE, E, SE, S, SW, W, NW} with 7 lengths per direction
Knight moves 8 move order: {2N1E, TN2E, 1S2E, 2S1E, 2S1W, 1S2W, TN2W, 2N1W}
Promotions 15 piece order: {KNIGHT, BISHOP, ROOK, QUEEN, KING}

Drop moves 5 piece order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN}

Total 84

4.3 Supervised Training

To allow a direct comparison with previous results, the supervised learning is performed
under the same setup as in [6]: For the convolutional neural network architecture the RI-
SEv2 architecture (Table 2.1) was used. The model parameters were initialized according
to Xavier weight initialisation [14] with a magnitude of 2.24 and updated by stochastic
gradient descent with Nesterov momentum [2]. The learning rate and the momentum
parameter were modified by a single one cycle linear schedule as proposed in [33]. The
corresponding maximum and minimum learning rate were set to 0.35 and 0.00001, as
shown in Figure 5.1.

The « value in the combined loss (2.1) which controls the weighting of the value loss
was reduced to 0.01 in order to avoid overfitting to the value target. Supervised learning
proceeded with a batch-size of 1,024 and a weight-decay of 10~* for seven epochs. Each
of the three variants was trained in a separate run as well as in a combined training
run where the training data for all variants is mixed. As can be seen in Figure 4.2 the
variance for the performance metrics in each variant was significantly higher in the case
of multi-variant training and failed to decrease over the course of training.

The overall best results were obtained by learning all variants at once rather than in-
dividually. However, the model was unfortunately unable to capture all variants within
a single model state but oscillated between different local optima (Table 4.3, column
"Combi-single"). Compared to the performance metrics in crazyhouse (Table 2.5), the
model converged to a higher policy loss but a lower value loss for the chess960 variant.
Although the inferior policy performance seems surprising, because generally there are
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Table 4.3: Performance metrics for different traing setups on the lichess.org

validation set

Metric Variant Only Combi-best Combi-single
Policy Loss chess960 1.4939 1.4835 1.4835
Value Loss chess960 0.6519 0.6504 0.6504
Policy Accuracy chess960 0.5136 0.5153 0.5153
Value Accuracy Sign chess960 0.7204 0.7220 0.7220
Policy Loss King of the Hill 1.5345 1.4910 2.4136
Value Loss King of the Hill 0.7995 0.7957 1.3589
Policy Accuracy King of the Hill 0.5090 0.5184 0.3249
Value Accuracy Sign King of the Hill 0.6593 0.6638 0.5121
Policy Loss Three-Check 1.3772 1.3185 2.0552
Value Loss Three-Check 0.7598 0.7537 0.8746
Policy Accuracy Three-Check 0.5588 0.5703 0.3672
Value Accuracy Sign Three-Check 0.6998 0.7037 0.6367
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Figure 4.1: Schedules used for modifying the parameters of Nesterov’s optimizer,
here for learning chess960, same as in [6]

more moves available in crazyhouse, in practice, the lines in crazyhouse are more forcing,
involve more checking moves and allow fewer transpositions.

The results of this experiment suggest that training a neural network with multiple objec-
tives at once or using transfer learning for initialization can be beneficial in cases where
the training data remains similar and is limited. However, effectively learning many vari-

ants within a single model state and in a combined reinforcement learning loop appears
to be difficult.
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5 Reinforcement Learning for Crazyhouse

This chapter describes the information for adapting the engine CrazyAra to learn crazy-
house in a reinforcement learning setting.

5.1 Computational Layouts

Although certain formulations can be conveniently represented mathematically, it is not
necessarily the best way for an algorithmic form.

Moreover, MCTS search tends to scale well with increasing number of nodes and gener-
ating self-play games accounts for the major part of computational requirements during
reinforcement learning. Consequently, code optimization plays an important role at large
scale reinforcement learning projects and there are a few important distinct design deci-
sion to make.

5.1.1 Monte-Carlo Layouts

The rollouts of a single MCTS batch-request can be either executed and allocated on a
single thread or with as many threads as the size of the mini-batch. Using a single thread
for each batch is usually preferable because it reduces the management overhead between
different threads, allows a more deterministic controllable behaviour and a better scaling
to high batch-sizes. In a desirable setup, two threads are sufficient to prepare the next
batch for neural network inference and fully utilize the graphics processing unit (GPU).

The board state for an individual node can be stored directly in each node or locally
copied from the initial root node. In the later case, the selected action must be applied
after every step but less memory is required at the cost of runtime.
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The UCT-formula (2.2) for node selection can be solved in vectorized form or through
single values. Either way, a loop over all singular values at all times should be avoided.
Instead we can abuse the deterministic and monotonous behaviour of node selection:
after a node has been evaluated by the neural network, its policy distribution is sorted
in descending order. For all future node selection at this node, the UCT-formula needs
only to be calculated on all already visited nodes as well as the first non-visited node
with the highest policy activation. For additional optimization, the sorting of the policy
distribution can be delayed until the first node visit after the initial node expansion.

5.1.2 Software

An automated setup of generating hundreds of thousand self-play games with integrated
learning, demands high software quality standards: preferably a 100 % crash free pro-
gram without any memory leak, and a fluid switching between training and replacing
the currently generating network.

The source code of CrazyAra® is published under the terms of the GNU General Public
License v3.0 (GPL-3.0; [11]) and the engine is compatible with the Universal Chess In-
terface (UCI; [20]). Several third parties libraries are used in different areas. Neural
network training and inference is executed via the deep learning MXNet library [4]. At
the time of writing a single GPU back-end for TensorRT? and CUDA3/cuDNN* as well
as two CPU back-ends for OpenCL> and IntelMKL® are supported. Representing chess
boards in python is done in the python-chess library [10]. The generated training data
is compressed in the Zarr [25] and z5 [27] library using the 1z47 compression format.
Vectorized operations in C+ + are implemented with the Blaze library [19, 18] and move
generation routines have been integrated from Multi-Variant Stockfish [9].

'https://github.com/QueensGambit/CrazyAra, accessed 2019-12-28
2https://developer.nvidia.com/tensorrt, accessed 2019-12-29
3https://developer.nvidia.com/cuda-zone, accessed 2019-12-29
*https://developer.nvidia.com/cudnn, accessed 2019-12-29
*https://www.khronos.org/opencl/, accessed 2019-12-29
®https://software.intel.com/en-us/mkl, accessed 2019-12-29
"https://github.com/1z4/1z4, accessed 2019-12-29
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5.2 Reinforcement Learning Setting

The self-play game generation and neural network update was executed on three NVIDIA
Tesla V100 on a DGX2 server instance.?

Two GPUs were exclusively used for selfplay game generation and one GPU was used
both for game generation and updating the neural network as soon as sufficiently many
samples have been acquired. On a single GPU about 45 games were generated per minute
which corresponded to 1,000 training samples per minute. Each training sample was
produced by an average of 800 MCTS rollouts with a batch-size of 8.

Not all of the game moves were exported as training samples and exported as further
described in Section 5.2.1. A new neural network was generated every 819,200 (= 640 -
128 - 10) newly generated samples. After the 10" model update, the number of required
samples was increased to 1,228,800 (= 640 - 128 - 15) samples. 81,920 (= 640 - 128) of
these samples were used for validation and the rest for training. Furthermore, 409,600
(= 640 - 128 - 5) samples were added and randomly chosen from 5 % of the most recent
replay memory data. The training proceeded for one epoch and afterwards, all samples,
except validation samples, were added to the replay memory.

Games were played until completion without a resign threshold because games in crazy-
house are generally shorter than in classical chess and practically always end in check-
mate or three-fold repetition. The search tree was reused during game generation, for
the benefit of higher speed, but at the cost of a small reduction in exploration.

Besides this, a Q-value-ratio of 0.15 was used to include a small amount of boots-trapping.
Generally, the higher the Q-value ratio, the lower the value loss became and the tendency
to converge to both extremes —1 and +1 decreased. The value loss weighting parameter
a (2.1) was set to 0.5 because of a defined value range from —1 to +1 instead of 0 to 1.

Rather than relying on a fixed learning rate and momentum, a Cosine-Annealing-Schedule [24]
was used. Additionally, a 25 % warm-up period was pre-prended to improve the assimi-
lation to context drifts in the given training data.

8TensorRT support and float16 backend was disabled due to a temporary driver incompatibility, otherwise
the speed would have likely been doubled.
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Figure 5.1: Schedules used for modifying the parameters of Nesterov’s optimizer,
here for training the first 10 model updates

5.2.1 Randomization

Finding an appropriate amount of exploration appeared to be the most critical aspect for
stable learning. If almost no exploration takes place, then the danger increases that the
agent to skip important lines. In consequence it only learns to exploit its former generator
network while losing overall generality.

According to the default AlphaZero algorithm [30], the move is sampled from the MCTS
policy based on 800 rollouts with a temperature value of 1.0 for the first 15 moves (30
plys). This appeared to be problematic in the case of crazyhouse in which many moves are
blunders and can change the final game outcome. Due to sampling for 30 plys, the final
game result which corresponds to the binary value target for training became severely
distorted and noisy. Therefore a move temperature value 7 of 0.8 with an exponential
move decay of 0.93 was used instead on every second ply. To still allow sufficient explo-
ration and to limit the probability of sampling poor moves from the MCTS policy, the first
r plys were directly sampled from the raw neural network policy with a temperature of
7 = 1, similar to [41]. The value r was determined by an exponential distribution with a
mean of 8 plys. Because the exponential distribution has a long tail and can potentially
return a high number of plys, in cases where a ply > 30 was returned it was uniformly
sampled from the range [0, 30] instead. The initialization was stopped either when the
number of given plys has been sampled or when the next move would lead to a terminal
state, making it a mate in one training sample.
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Sampling from the raw network policy not only requires little computational cost, but
also helps to reduce the amount of duplicate training samples. In contrast to supervised
learning, the first opening samples are almost identical for the policy target and only
differ in the value target when generating games with a single set of weights.

Moreover, in order to increase exploration, in w = 5% of all cases during initialization
from the raw policy, a temperature value of 7 = 2 was used with probability of 75 %,
7 = 5 with probability 20 % and 7 = 10 for the remaining 5%.

Lastly, the number of rollouts N = 800 for every training sample was slightly randomized
on every position:
N' = N + ngaeror - N, (5.1)

where ngeror ~ [—0.05, 40.05].

5.2.2 Changes in Configuration during the Run

The maximum learning rate started with a value of 0.005. It was then reduced by a factor
10 after the 10™ model update and again reduced to 0.0005 after the 20™ model update
index. The number of required files for training was increased from 10 to 15 after the
10" model update. Besides this, the probability w for increasing the temperature during
initialisation was increased from 5% to 25% after the 40" model update index.

5.3 Observations

The number of MCTS rollouts is an essential hyperparameter. MCTS tends to converge
a single node over time while other moves tend to get a lower visit proportion of the
full visit distribution. Only increasing the rollouts without changing other parameters
has the effect that exploration is reduced over time in a recursive fashion. The batch-
size for neural network network inference plays a major role as well. Higher batch-sizes
are usually preferable for achieving a higher number of board evaluations per second
(Figure 2.1). However, at a fixed number of evaluations, lower values achieve higher
playing strength because of updating the search tree at a higher frequency and achieving
higher search depth.

Figure 5.2 visualizes the performance on the withould validation set after each model
update. The policy loss is unable to reach a value of zero during reinforcement learning
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due to not learning against sparse labels, but overall both the value and policy loss de-
creased compared to the initial supervised trained network. However, because the model
generates its own data, a high policy accuracy was to be expected. The policy metrics
almost behave flat which is mainly because of a continuous change in the training data.

Similar to [41] a gating test of 100 games (drawn games exluded) was conducted to
measure the playing strength between the previously generating network and the up-
dated version. For these games 800 MCTS rollouts with a starting move temperature of
0.6 were used. If the contender network achieved a positive score, it replaced the current
generating network. Over the course of one million generated games, the new network
always managed to replace its old version.

5.4 Additional remarks

Policy pruning [41], in the form of setting all policy entries < 0.03 after move sampling
to 0, was disabled after the 11™ model update index, to ensure a higher exploration rate.
Future evaluation will be needed to judge if it is beneficial in the case of crazyhouse.

Playout cap random [41] has been implemented and briefly evaluated: reaching a high
amount of games seems not be an issue for crazyhouse. Playout cap random both reduced
the generation speed for training samples and likely increased the noise for the value
target due to an increasing blunder rate. It appears to be more beneficial in less tactical
game types with a higher average game length.

The integration of Q-Values for final move selection [6] has been shown to improve playing
strength at low node count. However, treating the new modified policy distribution as
the new policy target led to a diminishing exploration rate. Using the information on Q-
values for move selection, but not as the policy target might increase efficiency for future
tests.
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6 Empirical Evaluation

In this chapter we evaluate the Elo progression during selfplay, investigate the opening
preferences and conclude with a final 100 match comparison between Multi-Variant-
Stockfish and CrazyAra.

6.1 Elo-Development

The results are taken after one million generated self-play games (973,044 training games
/ 62,013,440 training samples, 77,180 validation games / 4,915,200 validation samples)
and 18 days of training® 2.

Besides that, due to opening sampling and the short general game length the effective cost
for generating a single game was reduced. Because analyzing playing strength in direct
comparison between two proceeding model updates can be misleading, the Elo was mea-
sured in an independent tournament of 2,750 games using every fifth model checkpoint
on random opening positions. Figure 6.1 visualizes the Elo progression extracted from
the tournament results in Table 6.1. Compared to the original model based on supervised
training on human games an improvement by roughly 370 Elo was achieved.

The graph also suggests that the model has not reached its final strength yet.

The full compressed self-play training data resulted in 29 GB disc space, including the game logs and all
intermediate model checkpoints.

2The generation was not performed continuously over 18 days, but sporadically interrupted due to changing
hyperparameters such as the maximum learning rate.
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Elo development during selfplay training

starting from supervised network Table 6.1: Match result for different
selfplay model checkpoints?

400

300 Rank Model-Update-Idx Elo +/- Games Score Draws
1 45 369 31 500 63.7% 5.0%
o 200 2 40 354 31 500 61.7% 3.8%
m
3 50 349 30 500 61.0% 4.8%
100 4 30 334 30 500 59.0% 4.8%
5 35 310 30 500 55.6% 4.0%
6 25 307 30 500 55.1% 4.2%
0 7 19 281 30 500 51.5% 5.0%
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Figure 6.1: Self Elo progression during temperature and a node policy temperature of 1.3
reinforcement learning was used.

6.2 Opening statistics

This section gives a systematic overview of the popularity trend for 42 crazyhouse opening
position during reinforcement learning. Each position is also accompanied by the white-
winrate as well as the draw ratio. The openings in crazyhouse are overall similar to
classical chess openings, however there are crazyhouse specific gambit opening positions
like the BO1 Scandinavian: Gambit and BO2 Alekhine: Crosky-Gambit. Moreover,
in contrast to chess, openings which involve moving the c-pawn or f-pawn (e. g English
Opening, Caro-Cann Defense, Dutch Defense,...) are not considered to be viable.
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6.2.1 Observations

The two most popular human openings C50 Italian Game: Giuoco Piano and C50 Ital-
ian Game: Hungarian Defense rapidly lost popularity, mainly because of an overwhelm-
ing white win rate. The C47 Four Knights Scotch was reached most often, presumably
due to a high chance of a transposition from different opening lines. Surprisingly, the
B20 Sicilian Defense was relatively popular; maybe this was due to a low prior knowl-
edge in Sicilian lines from human games and because other main openings, such as the
Scandinavian Defense and French Defense emerged as highly white favored also. The
high proportion of the AOO Grob Opening and A0O Polish Opening are sampling side
effects from the raw network policy.

Overall it can be stated that no concrete line was found for Black which equalizes White’s
opening advantage. Nonetheless, in openings such as the C55 Italian: Two Knights De-
fence, C47 Four Knights Scotch, BOO Nimzowitsch Defense and BO2 Alekhine it found
sufficiently many lines to limit White’s win rate under the given node and randomization
settings.

6.3 Strength comparison with Multi-Variant-Stockfish

In previous evaluations [6], we compared the playing strength of the initial network
for reinforcement learning which was trained supervised on human expert games with
thirteen crazyhouse engines on CPU. Further, we conducted ten games in time control
30 min + 30s between CrazyAraFish, a neural network trained on Stockfish crazyhouse
self-play games, and the latest official release (2018-11-29) of Multi-Variant-Stockfish at
that time. Stockfish won the match by six wins, one draw and three losses.

For this evaluation the same hardware and the latest development version (2019-12-
03) of Multi-Variant-Stockfish was used which appeared to have gained ~ 89 Elo® for
crazyhouse in self-play. Stockfish 10-Dev was running on an AMD® Ryzen 7, 1700 eight-
core processor X 16 with a hash-size of 4,096 MB and 8 threads, resulting in 6.7 million
NPS. CrazyAra 0.7.0 (Model-OS-45) was using the same processor as Stockfish on two
threads and additionally a NVIDIA® GTX1080ti with a batch-size of 16 for neural network
inference, yielding approximately seven up to ten thousand NPS.

3According to GitHub user Matuiss2, Multi-Variant-Stockfish (2019-12-03) scored 58 wins, 33 loses and
3 draws vs Multi-Variant-Stockfish (2018-11-29) in crazyhouse (TC: 1+1)
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Figure 6.6: Opening statistics 41-42

The favorable evaluation speed for CrazyAra is primarily due to the replacement of the
AlphaZero 19 x 256 architecture by the RISEv2 13 x 256 architecture. If CrazyAra
were using the original AlphaZero 19 x 256 architecture instead, it would have achieved
around 3,800 NPS (Figure 2.1).

The manual enhancements of checking moves was disabled in the case of CrazyAra.
Although it seemed to have helped in finding and defending forced mating sequences
quicker, it generally degraded playing performance. Rather than applying Dirichlet noise
on the prior root node policy, a temperature value of two was used on every expanded
node in order to increase the activation of low candidate moves while still respecting
the given policy of the neural network. Dirichlet noise with a weighting factor of 25 %
usually increased the policy activation of blunder moves and made the search results less
reproduceable, especially at low count. To avoid adding further noise, the ugjyisor (9.2.6
U-Value exploration factor [6]) was kept at constant 1.0. CrazyArareused the search tree
of the proceeding search and a temperature of zero for move selection. Pondering was
disabled for both engines.

Because the draw rate is minimal in crazyhouse and most common crazyhouse opening
positions provide the first player an advantage of more than one hundred centipawns, we
instead started the games from 50 randomly selected openings out of 81 opening posi-
tions which are intended to be more equal. The opening positions have been gathered by
crazyhouse expert FM optilink. Each opening position was played twice with reversed
colors in the second case.

Table 6.2 summarizes the match results: the match ended with a positive score in favor
of CrazyAra and 28 points ahead of Stockfish.

Hereinafter eight example games are given in which the same engine won with both the
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Table 6.2: Match result of CrazyAra 0.7.0 playing Multi-Variant-Stockfish-Dev in
a time control of 15min +10s

Engine Name Version Elo Rating  NPS Wapc Lapc + = -
CrazyAra 0.7.0, Model-OS-45 ? 8K 124+29 83+16 61 3 36
Stockfish 10 (2019-12-03) ~4,000 6,700K 83+16 124+29 36 3 61

white and black pieces from the identical starting position.*

6.3.1 Observations

The games reveal the different nature of the two engines: CrazyAra is generally less
materialistic and more willing to use long-term strategic sacrifices to gain initiative and
activate its pieces (e. g. Figure 6.7a). Furthermore, due to focusing on the most promising
lines, CrazyAra was able to reach higher depth in its principal variation than Stockfish.
It seems also more effective in utilizing pawn-pushes such as rook pawn attacks to its
advantage. Furthermore, it appears to employ a certain crazyhouse specific maneuver
regularly after castling: Kh1, Rg1 / Kh8, Rg8 (e.g. Figure 6.7a, 6.10a, 6.11a, 6.12a).
Overall, the majority of CrazyAra’s wins were based on Stockfish misevaluating certain
middle-game positions.

Moreover, some of CrazyAra’s lost matches (e. g. Figure 6.13a, 6.14a) revealed the major
drawback of the vanilla UCT algorithm which is its inability to share knowledge in be-
tween different branches, especially in cases where the policy and value function missed
an important line during search. As can be seen in the columns win average plys (Wapc)
and lost average plys (Lapc) of Table 6.2, CrazyAra also required more plys than Stock-
fish in converting winning games and was inferior at delaying lost games. The lower
efficiency at finding forced mating sequences was also a consequence of not enhancing
checking moves.

4All 100 games are available at the repository www . github.com/QueensGambit/CrazyAra
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(a) Evaluation progression for both engines

[Event "RL-Eval"]

[Site "Darmstadt, GER"]

[Date "2019.12.18"]

[White "CrazyAra-0.7.0-Model-OS-45"]

[Black "stockfish-x86_64-modern 2019-12-03"]
[Result "1-0"]

[TimeControl "900+10"]

[Variant "crazyhouse"]

1. e4 {book} d5 {book} 2. e5 {book} Bf5 {book} 3. d4 {+0.70/26 26s} e6 {-0.66/24 27s} 4. Nf3 {+0.73/30 26s} Ne7
{-0.28/24 13s} 5. Bg5 {+0.70/52 26s} Nbc6 {-0.22/27 39s} 6. Nc3 {+0.71/41 26s} h6 {-0.23/25 8.1s} 7. Be3 {+0.64/39
26s} Bg4 {-0.22/27 21s} 8. Bd3 {+0.55/34 27s} Nf5 {-0.35/26 23s} 9. Bxf5 {+0.61/63 26s} Bxf5 {-0.35/26 14s} 10. O-O
{+0.59/61 26s} Be7 {-0.16/28 29s} 11. N@h5 {+1.44/42 28s} Rg8 {-0.74/29 60s} 12. Ng3 {+1.99/28 27s} Bh7 {-0.42/26
17s} 13. Khl {+2.48/29 27s} Qd7 {+2.27/24 14s} 14. Rgl {+2.44/31 27s} 0-O-O {+2.74/23 13s} 15. a4 {+1.76/38
27s} Kb8 {+1.46/28 136s} 16. Nb5 {+2.43/41 27s} Ka8 {+1.28/28 77s} 17. Nxa7 {+3.05/41 27s} Nxa7 {+2.08/25 12s}
18. a5 {+3.31/38 27s} B@ab6 {+2.33/26 14s} 19. P@b6 {+3.30/37 27s} Nc8 {+2.28/28 100s} 20. c4 {+3.09/24 27s}
dxc4 {+4.64/24 7.2s} 21. d5 {+3.78/35 27s} exd5 {+3.58/26 33s} 22. bxc7 {+4.49/39 27s} Qxc7 {+3.91/27 25s} 23.
Bb6 {+4.45/37 27s} Qd7 {+1.91/28 76s} 24. P@d6 {+4.52/38 27s} Rde8 {+1.97/26 146s} 25. dxe7 {+1.91/37 43s}
P@e4 {+4.23/23 15s} 26. €6 {+4.45/27 27s} Qxe6 {+5.32/23 5.7s} 27. Nd4 {+4.33/31 27s} Qxe7 {+4.15/26 25s} 28.
B@g4 {+4.23/33 27s} P@e6 {+4.46/25 13s} 29. Nxe4 {+4.16/52 28s} Bxe4 {+4.84/25 9.6s} 30. P@b5 {+4.90/31 27s}
P@d7 {+3.06/27 55s} 31. bxa6 {+3.51/33 42s} bxa6 {+3.86/26 10s} 32. b4 {+4.06/32 27s} P@c6 {+5.48/25 37s} 33.
b5 {+4.50/36 27s} P@b7 {+0.35/26 28s} 34. bxa6 {+4.63/39 28s} bxa6 {+1.72/25 7.3s} 35. Bf3 {+4.88/25 27s} Bxf3
{+3.49/25 50s} 36. Qxf3 {+4.95/32 28s} B@d6 {+2.43/26 48s} 37. P@b5 {+5.39/40 28s} cxb5 {+2.84/20 3.3s} 38. Nxb5
{+5.40/30 28s} axb5 {+4.29/24 21s} 39. P@ab6 {+6.01/41 29s} P@b7 {+4.76/23 12s} 40. axb7+ {+6.17/32 28s} Kxb7
{+1.85/26 22s} 41. P@c5 {+6.34/34 18s} N@ab6 {+1.51/24 13s} 42. cxd6 {+6.31/32 17s} Qxd6 {+1.26/22 10s} 43. B@a4
{+6.78/35 19s} P@c6 {+4.31/20 4.4s} 44. B@c5 {+7.43/24 17s} Nxc5 {+2.40/22 16s} 45. Bxb5 {+7.36/27 16s} Nxb6
{+1.91/21 10s} 46. axb6 {+10.72/21 16s} N@e4 {-1.68/21 10s} 47. B@c7 {+11.78/26 16s} Qxc7 {-6.72/19 10.0s} 48.
bxc7 {+12.72/30 15s} B@b6 {-3.14/19 4.3s} 49. Bxc6+ {+14.77/19 15s} Kxc6 {-10.28/20 16s} 50. N@e5+ {+15.15/17
15s} Kb7 {-10.34/16 9.9s} 51. P@a5 {+15.74/19 15s} B@a7 {-10.33/17 10s} 52. axb6 {+26.03/16 15s} Bxb6 {-9.20/18
6.0s} 53. B@d8 {+30.43/15 14s} Rxd8 {-47.15/18 12s} 54. cxd8=Q {+25.23/14 14s} Rxd8 {-M36/23 12s} 55. R@b5
{+25.22/13 14s} B@a7 {-17.95/17 10s} 56. Rxa7+ {+26.51/9 14s} Kxa7 {-29.24/17 8.7s} 57. P@a5 {+27.27/12 13s}
R@a2 {-28.40/16 11s} 58. axb6+ {+29.97/9 13s} Ka8 {-36.43/17 9.7s} 59. B@e3 {+32.38/9 13s} P@d4 {-26.76/16 10s}
60. Rxc5 {+34.24/12 13s} B@b8 {-M22/19 10.0s} 61. b7+ {+33.16/12 13s} Kxb7 {-M14/22 9.7s} 62. Rb5+ {+35.83/11
13s} B@b6 {-M18/26 4.4s} 63. Rxb6+ {+38.19/13 13s} Kxb6 {-M16/32 4.7s} 64. Bxd4+ {+34.77/13 12s} N@c5 {-M26/20
5.2s} 65. Bxc5+ {+35.79/11 12s} Nxc5 {-33.28/17 6.6s} 66. B@d4 {+38.88/12 12s} R@b5 {-M18/29 26s} 67. Bxc5+
{+37.14/11 12s} Kb7 {-M14/33 3.9s} 68. P@e7 {+40.97/11 12s} B@c7 {-M16/27 5.4s} 69. exd8=N+ {+41.12/9 12s}
Bxd8 {-M14/33 5.6s} 70. Nxd7 {+45.60/7 12s} Ra6 {-M12/27 5.0s} 71. Nxb8 {+44.56/9 12s} Rxc5 {-M10/37 6.2s} 72.
Nxa6 {+56.67/7 12s} Kxa6 {-M8/47 5.7s} 73. N@b4+ {+67.07/5 11s} Kb6 {-M6/245 5.6s} 74. Q@a6+ {+75.38/5 11s}
Kc7 {-M4/1 0.001s} 75. R@b7+ {+99.99/3 11s} Kc8 {-M2/1 0.001s} 76. R@b8# {+99.99/1 0.025s, White mates} 1-0

Figure 6.7: Game 7/ 100

45



Stockfish 10
=== (CrazyAra 0.7.0

0 e S v

. N

0 10 20 30 40 50 60
Move Number

Centipawn Evaluation
|
&

(a) Evaluation progression for both engines

[Event "RL-Eval"]

[Site "Darmstadt, GER"]

[Date "2019.12.18"]

[White "stockfish-x86_64-modern 2019-12-03"]
[Black "CrazyAra-0.7.0-Model-OS-45"]

[Result "0-1"]

[TimeControl "900+10"]

[Variant "crazyhouse"]

1. e4 {book} d5 {book} 2. e5 {book} Bf5 {book} 3. d4 {+1.56/26 52s} e6 {-0.64/42 26s} 4. Nc3 {+1.68/28 93s} Ne7
{-0.69/40 26s} 5. Bb5+ {+1.49/25 15s} Nbc6 {-1.12/37 26s} 6. Nge2 {+2.47/25 9.8s} a6 {-0.95/36 26s} 7. Ba4 {+2.19/27
28s} h5 {-0.87/34 26s} 8. Bg5 {+2.62/25 27s} h4 {-0.69/39 27s} 9. h3 {+3.80/26 38s} Rh5 {-0.42/45 27s} 10. Be3
{+4.55/24 9.2s} Ng6 {-0.49/41 26s} 11. O-O {+1.84/28 81s} Rg5 {+0.70/39 27s} 12. Bxc6+ {+1.41/30 110s} bxc6
{+0.78/56 26s} 13. Bxg5 {+1.18/29 18s} Qxg5 {+0.98/65 26s} 14. N@f3 {+0.02/30 28s} Qd8 {+1.19/63 26s} 15.
R@g5 {+1.35/31 152s} B@e4 {+1.25/67 27s} 16. Rxf5 {0.00/30 20s} exf5 {+1.31/75 27s} 17. B@h5 {0.00/30 12s} Bxf3
{+1.36/73 27s} 18. Bxf3 {0.00/31 16s} N@g5 {+1.47/71 27s} 19. B@h5 {+2.05/29 12s} B@e4 {+1.53/69 27s} 20. Bxe4
{+2.74/27 50s} dxe4 {+1.66/61 28s} 21. Nxe4 {+3.69/26 11s} fxe4 {+1.81/59 27s} 22. B@g4 {+3.77/26 12s} B@d7
{+2.01/57 28s} 23. e6 {+3.85/26 22s} Bxe6 {+2.03/54 27s} 24. Bxe6 {+2.27/27 41s} Bd6 {+2.24/54 27s} 25. P@e5
{+2.95/25 9.6s} N@f3+ {+2.35/52 28s} 26. gxf3 {+6.15/22 12s} Nxf3+ {+2.40/50 27s} 27. Bxf3 {+6.17/22 15s} exf3
{+2.41/48 28s} 28. B@e4 {+7.46/22 17s} Qg5+ {+2.60/46 29s} 29. N@g3 {+1.95/27 100s} R@g2+ {+2.58/45 31s}
30. Khl {+5.76/1 Os} hxg3 {+2.68/56 28s} 31. Bxc6+ {-3.87/23 84s} P@d7 {+3.45/53 29s} 32. Nxg3 {+1.02/20 8.8s}
Rxg3 {+3.60/51 28s} 33. Bexd7+ {-5.79/21 31s} Kd8 {+4.85/65 28s} 34. P@e7+ {-4.25/21 29s} Kxe7 {+6.24/33 30s}
35. P@g2 {-9.63/23 41s} fxg2+ {+6.77/44 29s} 36. Bxg2 {-6.97/21 5.6s} P@f3 {+7.25/27 29s} 37. Qxf3 {-10.58/22 26s}
Rxf3 {+9.20/25 30s} 38. exd6+ {-11.38/21 14s} cxd6 {+10.52/23 29s} 39. P@g3 {-13.44/20 9.9s} B@e4 {+11.46/17
30s} 40. N@c8+ {-14.07/18 10s} Rxc8 {+14.89/17 31s} 41. B@c6 {-23.42/19 10s} Rxc6 {+19.15/17 19s} 42. Bxc6
{-25.48/18 10.0s} Bxc6b {+19.02/15 18s} 43. R@c7+ {-25.85/17 10s} B@d7 {+20.29/11 18s} 44. P@b7 {-27.67/17 9.8s}
B@b8 {+21.48/11 18s} 45. Rxd7+ {-31.34/17 10s} Kxd7 {+22.17/11 17s} 46. d5 {-32.76/17 10.0s} Bxd5 {+24.53/11
17s} 47. P@e6+ {-37.16/17 10s} fxe6 {+29.45/9 16s} 48. Rael {-51.24/17 10.0s} Rxg3 {+36.86/5 16s} 49. B@e8+
{-M12/40 7.6s} Kxe8 {+32.54/13 16s} 50. Rxe6+ {-M14/29 4.0s} Bxe6 {+43.67/11 15s} 51. P@f7+ {-M12/40 5.9s} Kxf7
{+42.94/9 15s} 52. fxg3+ {-M16/27 4.8s} P@f4 {+37.89/7 15s} 53. Rxf4+ {-M12/44 5.6s} Qxf4 {+39.78/5 15s} 54.
R@f8+ {-M12/43 5.0s} Nxf8 {+51.29/7 14s} 55. P@g6+ {-M10/51 5.8s} Nxg6 {+50.29/5 14s} 56. gxf4 {-M8/62 5.9s}
N@g3+ {+44.89/7 14s} 57. Kgl {-M6/245 2.5s} Q@el+ {+66.74/7 14s} 58. Q@f1 {-M6/245 1.6s} N@e2+ {+64.09/5
13s} 59. Kh2 {-M4/1 Os} Nxfl1+ {+99.99/3 13s} 60. Bxfl {-M2/245 0.013s} Q@gl# {+99.99/1 0.021s, Black mates} 0-1

Figure 6.8: Game 8 /100
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(a) Evaluation progression for both engines

[Event "RL-Eval"]

[Site "Darmstadt, GER"]

[Date "2019.12.18"]

[White "CrazyAra-0.7.0-Model-0S-45"]

[Black "stockfish-x86_64-modern 2019-12-03"]
[Result "1-0"]

[TimeControl "900+10"]

[Variant "crazyhouse"]

1. d4 {book} Nf6 {book} 2. Bf4 {book} e6 {book} 3. e3 {+1.17/31 26s} Be7 {-0.70/28 68s} 4. Nf3 {+0.87/28 26s} Nc6
{-0.63/27 42s} 5. Nc3 {+1.03/33 26s} O-O {-1.10/28 66s} 6. Bc4 {+1.28/38 26s} Nh5 {+0.22/29 25s} 7. d5 {+1.41/55
27s} exd5 {+0.37/24 7.3s} 8. Nxd5 {+1.18/49 26s} d6 {+0.90/25 12s} 9. P@h6 {+1.24/61 26s} Nxf4 {-0.03/28 35s} 10.
exf4 {+1.32/66 26s} gxh6 {0.00/27 15s} 11. O-O {+1.13/64 26s} B@f6 {+0.65/28 79s} 12. Nxe7+ {+1.56/48 29s} Bxe7
{-0.22/29 42s} 13. B@g5 {+1.33/35 26s} P@h3 {+0.15/28 28s} 14. Bxh6 {+2.26/35 27s} hxg2 {+3.19/23 12s} 15. P@g7
{+2.39/53 27s} gxf1=Q+ {+3.54/26 42s} 16. Qxfl {+2.43/45 27s} R@g4+ {+2.12/29 165s} 17. P@g2 {+2.86/48 27s}
Rxg7 {+1.31/28 28s} 18. Bxg7 {+3.06/50 27s} Kxg7 {+1.53/23 8.8s} 19. Rel {+3.23/57 27s} B@g4 {-1.28/28 140s}
20. N@d5 {+4.75/27 29s} Bf6 {-0.09/27 30s} 21. Nxf6 {+7.03/32 27s} Qxf6 {-6.69/24 19s} 22. B@h4 {+7.73/32 27s}
Qxb2 {-4.92/26 60s} 23. R@g5+ {+9.83/34 28s} N@gb6 {-4.43/24 7.3s} 24. Rxg4 {+9.33/38 28s} Bxg4 {-4.48/26 12s}
25. B@f6+ {+9.62/37 27s} Qxf6 {-4.49/28 38s} 26. Bxf6+ {+9.44/52 27s} Kxf6 {-4.21/25 15s} 27. Q@g5+ {+9.47/50
28s} Kg7 {-4.21/1 Os} 28. Qxg4 {+9.95/48 28s} B@c3 {-5.71/25 15s} 29. {5 {+10.20/33 28s} N@h6 {-4.14/26 24s} 30.
Qh5 {+11.43/31 28s} Nf4 {-9.07/24 81s} 31. Qg5+ {+16.44/26 31s} Kh8 {-9.38/23 16s} 32. f6 {+16.70/26 28s} Bxf6
{-7.53/23 8.2s} 33. Qxf6+ {+16.67/23 28s} P@g7 {-7.41/24 14s} 34. Qxh6 {+17.44/23 28s} gxh6 {-13.32/24 42s} 35.
B@f6+ {+17.36/22 29s} Kg8 {-11.11/22 3.8s} 36. B@g7 {+17.85/21 29s} B@h8 {-14.04/23 27s} 37. Bxf8 {+17.99/23 30s}
Bxf6 {-15.57/19 15s} 38. Bxh6 {+18.47/23 30s} P@e2 {-12.05/18 6.7s} 39. Rxe2 {+17.98/21 30s} Nxe2+ {-9.58/18 3.8s}
40. Bxe2 {+18.10/16 31s} B@d4 {-9.55/21 19s} 41. P@g7 {+18.66/20 20s} Bxg7 {-9.15/21 3.1s} 42. Bxg7 {+19.21/20
18s} Bxg7 {-14.44/22 15s} 43. P@f6 {+19.55/13 18s} B@f8 {-14.46/21 12s} 44. fxg7 {+20.03/21 18s} Bxg7 {-13.67/22
3.5s} 45. B@f6 {+21.74/24 17s} Q@f8 {-14.76/21 16s} 46. Bxg7 {+28.17/11 17s} Qxg7 {-15.46/22 10s} 47. N@f5
{+25.60/12 16s} B@f8 {-16.03/23 10s} 48. Nxg7 {+35.52/11 16s} Bxg7 {-15.47/19 4.8s} 49. B@d5 {+29.03/10 16s}
R@f6 {-16.66/20 15s} 50. Bxf7+ {+27.59/12 15s} Kh8 {-18.17/20 10s} 51. B@e8 {+31.98/11 15s} R@f8 {-17.51/19
10.0s} 52. P@g6 {+31.98/9 15s} Raxe8 {-15.93/19 10s} 53. Bxe8 {+28.79/9 15s} B@d5 {-15.49/19 10s} 54. gxh7
{+28.39/13 14s} Rxe8 {-21.28/18 10s} 55. P@d7 {+29.84/11 14s} Ref8 {-16.82/17 3.4s} 56. R@e8 {+28.28/11 14s} B@g6
{-22.43/18 16s} 57. R@g8+ {+26.81/14 14s} Bxg8 {-23.81/19 10s} 58. hxg8=Q+ {+26.99/15 13s} Rxg8 {-24.75/19 10s}
59. Rxg8+ {+29.53/11 13s} Kxg8 {-31.07/17 10.0s} 60. B@d5+ {+31.83/9 13s} P@e6 {-29.19/18 10.0s} 61. R@e8+
{+30.32/14 13s} R@f8 {-27.08/18 8.8s} 62. Bxe6+ {+31.39/11 13s} Rxe6 {-24.69/18 11s} 63. Rxe6 {+30.58/11 13s}
B@h7 {-18.63/16 10s} 64. P@e7 {+34.63/11 13s} Nxe7 {-27.00/18 10s} 65. Rxe7 {+38.41/12 12s} N@f7 {-29.17/16
10.0s} 66. R@e8 {+32.82/7 12s} R@a8 {-32.31/17 9.9s} 67. Rxa8 {+30.24/18 12s} Rxa8 {-32.10/18 7.3s} 68. R@c8+
{+28.63/17 12s} R@f8 {-46.22/18 12s} 69. Rxa8 {+28.14/10 12s} Rxa8 {-58.31/18 10s} 70. R@c8+ {+25.95/9 12s}
R@f8 {-M22/20 9.0s} 71. Q@e8 {+36.19/9 12s} Kh8 {-62.88/15 11s} 72. Rxa8 {+46.02/19 12s} Bg8 {-M16/25 7.6s} 73.
Qxf8 {+53.41/8 12s} Bxf8 {-M14/34 4.8s} 74. Rxf8 {+45.17/7 11s} Q@g7 {-M12/38 9.7s} 75. Rexf7 {+47.65/7 11s}
Bxf7 {-45.33/14 3.0s} 76. d8=Q {+42.70/7 11s} R@g6 {-M32/17 23s} 77. B@f6 {+46.34/8 11s} Rxf6 {-M18/26 4.3s} 78.
Qxf6 {+46.81/9 11s} Qxf6 {-M20/16 4.7s} 79. N@g4 {+43.92/10 11s} Qf5 {-M20/18 14s} 80. R@h6+ {+39.74/13 11s}
Kg7 {-M10/42 4.4s} 81. Rxg8+ {+47.08/7 11s} Bxg8 {-M10/47 5.3s} 82. B@f6+ {+49.18/5 11s} Kf8 {-M8/77 5.2s} 83.
R@d8+ {+44.04/3 11s} B@e8 {-M6/245 0.83s} 84. Rxe8+ {+52.24/7 11s} Kxe8 {-M6/245 1.5s} 85. R@d8+ {+62.49/5
11s} Kf7 {-M4/1 Os} 86. N@g5+ {+99.99/3 11s} Qxg5 {-M2/1 0.001s} 87. Nxg5# {+99.99/1 0.017s, White mates} 1-0

Figure 6.9: Game 23 /100
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[Event "RL-Eval"]

[Site "Darmstadt, GER"]

[Date "2019.12.18"]

[White "stockfish-x86_64-modern 2019-12-03"]
[Black "CrazyAra-0.7.0-Model-OS-45"]

[Result "0-1"]

[TimeControl "900+10"]

[Variant "crazyhouse"]

1. d4 {book} Nf6 {book} 2. Bf4 {book} e6 {book} 3. e3 {+1.34/28 65s} d6 {-0.93/24 26s} 4. Nf3 {+1.33/29 83s} Be7
{-0.90/32 26s} 5. Nc3 {+1.46/28 26s} Ncb6 {-1.12/38 26s} 6. h3 {+1.50/25 14s} O-O {-0.57/36 27s} 7. Be2 {+1.51/25 11s}
Kh8 {-0.46/43 26s} 8. 0-O {+2.01/23 11s} Rg8 {-0.49/41 26s} 9. e4 {+2.10/24 11s} e5 {+0.49/60 27s} 10. dxe5 {+4.45/25
12s} dxe5 {+0.41/58 26s} 11. Qxd8 {+4.96/29 42s} Bxd8 {+0.31/52 26s} 12. Nxe5 {+4.92/27 10s} Nxe5 {+0.49/55 26s}
13. Bxe5 {+5.54/26 21s} Bxh3 {+0.47/58 26s} 14. N@g5 {+3.53/28 44s} N@h6 {+0.36/56 26s} 15. Nxh3 {+1.76/27
32s} P@g4 {+0.62/57 27s} 16. Q@g3 {+1.75/28 40s} gxh3 {+1.04/54 29s} 17. Qxh3 {+1.70/27 11s} P@g4 {+1.23/67
27s} 18. Qh2 {+2.56/26 73s} Q@h5 {+2.81/41 27s} 19. Qxh5 {+2.09/27 80s} Nxh5 {+2.83/43 27s} 20. P@g3 {+2.28/29
119s} Bf6 {+3.42/40 27s} 21. Bxf6 {+2.06/29 17s} Nxf6 {+3.47/55 27s} 22. Q@hl {+1.49/30 77s} B@h3 {+3.60/43
28s} 23. gxh3 {0.00/32 26s} gxh3 {+3.92/45 27s} 24. Qxh3 {0.00/34 14s} P@g4 {+4.27/43 27s} 25. Qh2 {+1.00/27
64s} N@f3+ {+4.24/37 27s} 26. Bxf3 {0.00/29 17s} gxf3 {+4.30/35 27s} 27. B@h3 {0.00/29 27s} B@g4 {+4.34/45 28s}
28. B@f5 {0.00/31 27s} Bxh3 {+4.57/51 29s} 29. Bxh3 {+0.26/31 12s} B@g4 {+4.49/44 28s} 30. B@f5 {0.00/35 50s}
Q@h5 {+5.31/41 30s} 31. B@h4 {0.00/27 22s} Bxh3 {+6.43/27 29s} 32. Bxf6 {+1.50/22 14s} gxf6 {+7.26/23 28s} 33.
Bxh3 {-6.00/24 77s} B@e5 {+8.31/25 29s} 34. B@d4 {-3.93/21 6.9s} Bxd4 {+11.30/32 29s} 35. N@f4 {-8.56/23 19s} Bxc3
{+12.24/34 29s} 36. Nxh5 {-7.31/22 21s} N@e2+ {+12.68/32 29s} 37. Kh1 {-7.31/1 Os} B@g4 {+13.36/26 29s} 38. N@e3
{-12.35/21 40s} Bxh3 {+13.86/29 30s} 39. Qxh3 {-10.97/20 4.8s} B@g4 {+14.20/32 29s} 40. B@f8 {-15.77/20 25s} Raxf8
{+16.08/33 32s} 41. P@e7 {-13.70/20 8.1s} B@g7 {+16.65/27 19s} 42. Nxg4 {-17.58/21 15s} B@g2+ {+16.77/25 18s} 43.
Qxg2 {-11.79/19 2.9s} fxg2+ {+16.96/23 17s} 44. Kxg2 {-22.83/21 17s} Nxg4 {+17.66/21 17s} 45. Q@h3 {-24.47/19 11s}
Q@h2+ {+18.04/27 17s} 46. Qxh2 {-25.74/20 10s} Nxh2 {+18.27/28 16s} 47. Q@h4 {-27.08/19 10s} N@f3 {+19.85/21
17s} 48. Qxh2 {-22.63/16 10s} Nxh2 {+20.59/24 16s} 49. f3 {-M40/17 10.0s} Nxfl {+42.78/11 16s} 50. Rxfl {-M12/41
4.6s} Nxg3 {+34.52/9 15s} 51. N@g6+ {-M10/69 4.7s} hxg6t {+42.24/7 15s} 52. N@f4 {-M8/78 4.8s} Nxfl {+41.63/7
15s} 53. B@g3 {-M8/55 4.9s} N@e3+ {+40.56/9 14s} 54. Kgl {-M8/79 4.9s} P@h2+ {+37.59/7 14s} 55. Bxh2 {-M6/245
0.47s} Nxh2 {+47.11/5 14s} 56. Nxg6+ {-M8/245 1.5s} fxgb {+81.41/3 14s} 57. B@f1 {-M6/245 0.11s} Nxf3+ {+73.58/5
14s} 58. Kf2 {-M4/245 0.060s} Q@el+ {+99.99/3 13s} 59. Kxf3 {-M2/1 0s} Q@g4# {+99.99/1 0.014s, Black mates} 0-1

Figure 6.10: Game 24 /100
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(a) Evaluation progression for both engines

[Event "RL-Eval"]

[Site "Darmstadt, GER"]

[Date "2019.12.18"]

[White "CrazyAra-0.7.0-Model-0S-45"]

[Black "stockfish-x86_64-modern 2019-12-03"]
[Result "1-0"]

[TimeControl "900+10"]

[Variant "crazyhouse"]

1. e4 {book} e5 {book} 2. Bc4 {book} Nc6 {book} 3. c3 {book} Nf6 {book} 4. d3 {-0.84/32 26s} Be7 {+0.66/27 30s} 5. Nf3
{-0.75/36 26s} d6 {+1.01/28 61s} 6. O-O {-0.61/32 27s} O-O {+1.00/24 12s} 7. Nbd2 {-0.55/32 26s} Na5 {+1.26/24 15s} 8.
Kh1 {-0.47/33 27s} Bg4 {+1.47/27 56s} 9. Rgl {-0.21/40 28s} Qd7 {+3.06/26 40s} 10. Qf1 {-0.61/40 27s} Nh5 {+3.73/25
10s} 11. h3 {-1.16/42 27s} Bxf3 {+2.52/31 69s} 12. gxf3 {-1.12/56 27s} Bh4 {+3.80/29 38s} 13. B@f5 {-1.11/65 27s} Nxc4
{+4.05/24 7.5s} 14. Nxc4 {-1.09/33 28s} Qd8 {+4.16/28 44s} 15. Be3 {-1.13/53 27s} B@f4 {+3.61/28 32s} 16. N@e2
{-1.12/47 27s} Bxe3 {+3.61/25 13s} 17. Nxe3 {-0.91/43 28s} Bxf2 {+4.55/25 18s} 18. Qxf2 {-0.38/48 28s} B@h4 {+4.60/25
18s} 19. Bxh7+ {-0.60/51 27s} Kxh7 {+5.57/25 13s} 20. P@g3 {-0.31/48 28s} Nxg3+ {+6.29/25 23s} 21. Rxg3 {-0.16/43
27s} B@g5 {+6.48/25 29s} 22. B@c4 {-0.03/42 28s} Bxg3 {+1.77/25 28s} 23. Qxg3 {+0.39/60 28s} P@f4 {0.00/27 42s}
24. Qg2 {+0.45/34 28s} N@f2+ {0.00/29 25s} 25. Qxf2 {+0.76/39 28s} fxe3 {0.00/30 13s} 26. B@f5+ {+0.99/45 28s}
Kh8 {+0.84/28 28s} 27. Bxf7 {+3.58/53 29s} P@h7 {-8.97/26 43s} 28. Bxh7 {+4.93/42 28s} Rxf7 {-5.84/25 19s} 29.
N@g6+ {+6.23/40 28s} Kxh7 {-5.84/1 0s} 30. B@f5 {+6.80/38 28s} R@h6 {-11.04/28 116s} 31. Nxe5+ {+7.06/50 29s} g6
{-11.06/26 54s} 32. Bxg6+ {+7.37/42 29s} Rxgb {-12.59/25 24s} 33. P@f5 {+7.66/40 29s} dxe5 {-11.61/23 13s} 34. fxg6+
{+7.83/31 29s} Kxg6 {-11.25/21 11s} 35. P@f5+ {+7.95/29 29s} Kh6 {-12.06/25 139s} 36. N@g4+ {+8.85/27 32s} Kg7
{-12.11/21 28s} 37. Qg2 {+9.38/29 29s} B@h5 {-8.29/20 33s} 38. P@g6 {+10.92/25 31s} B@h7 {-15.23/23 33s} 39. gxf7
{+12.25/21 30s} Bxg4 {-10.14/16 6.5s} 40. R@e8 {+13.70/19 30s} N@f8 {-23.93/20 50s} 41. Rxd8 {+15.66/17 19s} N@f2+
{-39.92/14 27s} 42. Qxf2 {+26.65/7 18s} Bxf3+ {-M16/30 8.3s} 43. Qxf3 {+43.34/11 18s} P@g2+ {-M14/36 4.8s} 44. Qxg2
{+47.75/9 17s} N@f2+ {-M12/59 4.8s} 45. Qxf2 {+43.99/5 17s} P@g2+ {-M10/59 5.3s} 46. Qxg2 {+53.53/7 17s} B@f6
{-M8/68 5.3s} 47. Rxa8 {+47.96/7 16s} Kh6 {-M8/53 5.2s} 48. N@g4+ {+52.90/5 16s} Kg7 {-M6/245 1.8s} 49. R@g8+
{+58.33/5 16s} Bxg8 {-M4/245 0.053s} 50. fxg8=Q+ {+55.35/7 15s} Kxg8 {-54.39/1 0.001s} 51. Nxf6+ {+61.78/5 15s}
Kf7 {-M4/245 0.064s} 52. Q@g8+ {+99.99/3 15s} Kxf6 {-M2/245 0.015s} 53. Q2xg5# {+99.99/1 0.063s, White mates} 1-0

Figure 6.11: Game 31/ 100
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Move Number

(a) Evaluation progression for both engines

[Event "RL-Eval"]

[Site "Darmstadt, GER"]

[Date "2019.12.18"]

[White "stockfish-x86_64-modern 2019-12-03"]
[Black "CrazyAra-0.7.0-Model-OS-45"]

[Result "0-1"]

[TimeControl "900+10"]

[Variant "crazyhouse"]

1. e4 {book} e5 {book} 2. Bc4 {book} Nc6 {book} 3. c3 {book} Nf6 {book} 4. d3 {0.00/29 24s} Be7 {+0.88/31 26s} 5. Nf3
{0.00/31 19s} d6 {+0.78/35 26s} 6. O-O {0.00/33 32s} 0-O {+0.64/31 27s} 7. Bb3 {0.00/35 11s} Na5 {+1.71/29 27s} 8.
Bc2 {0.00/34 12s} Nc6 {+1.67/31 27s} 9. Bb3 {0.00/33 15s} Na5 {+1.43/47 27s} 10. Bc2 {0.00/36 19s} Qd7 {+1.09/45 27s}
11. Nbd2 {0.00/31 143s} Qg4 {+0.74/26 27s} 12. Rel {+0.03/29 9.2s} Nc6 {+1.57/36 28s} 13. Nfl {+0.04/29 13s} Kh8
{+1.71/41 27s} 14. Ne3 {0.00/30 51s} Qh5 {+2.36/35 27s} 15. Qe2 {-1.44/24 26s} Rg8 {+2.58/42 27s} 16. Bd1 {0.00/28
24s} g5 {+2.79/41 27s} 17. Nd2 {0.00/25 12s} Qxe2 {+2.66/54 27s} 18. Bxe2 {+0.04/25 11s} Be6 {+2.77/43 27s} 19. Ndf1l
{+1.22/24 23s} Rgb {+3.13/35 29s} 20. Ng3 {-0.33/29 187s} Rag8 {+3.13/43 28s} 21. Q@b5 {-0.33/25 30s} Rh6 {+4.23/47
28s} 22. Qxb7 {+0.99/23 15s} Nd4 {+4.55/40 27s} 23. cxd4 {+1.73/25 57s} exd4 {+4.81/44 28s} 24. Qa8 {0.00/29 67s}
Q@g7 {+5.75/54 28s} 25. Qxg8+ {+2.26/25 18s} Nxg8 {+5.98/52 28s} 26. N@f5 {-1.15/28 138s} dxe3 {+6.11/54 29s}
27. Bxe3 {-1.57/26 17s} P@f4 {+6.37/47 28s} 28. Nxg7 {-2.62/25 42s} fxe3 {+6.38/50 28s} 29. Nxe6 {-2.41/23 7.5s}
exf2+ {+7.52/25 30s} 30. Kh1 {-3.00/25 22s} B@e5 {+7.09/37 29s} 31. Q@f3 {-2.45/24 44s} Rxh2+ {+7.83/28 29s} 32.
Kxh2 {4+0.03/1 Os} fxe1=Q {+7.95/33 29s} 33. Rxel {-3.82/22 18s} P@f4 {+7.18/33 29s} 34. R@h3 {-6.85/25 60s} fxg3+
{+11.10/27 30s} 35. Qxg3 {-8.09/23 34s} Bxg3+ {+12.38/23 29s} 36. Rxg3 {-7.06/21 4.1s} Q@h6+ {+12.88/29 29s} 37.
R@hS5 {-9.44/21 22s} P@h4 {+13.78/19 30s} 38. B@f2 {-9.53/21 12s} hxg3+ {+14.49/28 31s} 39. Bxg3 {-12.34/20 10s}
R@h4+ {+15.54/26 30s} 40. P@h3 {-10.70/19 7.1s} Rxh5 {+15.78/22 30s} 41. B@c3+ {-13.01/19 13s} Bf6 {+16.50/23
20s} 42. Bxh5 {-12.48/21 9.9s} Bxc3 {+17.36/21 18s} 43. bxc3 {-16.07/21 10s} B@f4 {+16.89/21 18s} 44. B@d4+
{-9.28/19 4.9s} R@g7 {+17.29/19 18s} 45. P@f2 {-14.48/20 15s} Bxg3+ {+18.25/17 17s} 46. fxg3 {-5.40/19 4.0s} B@e5
{+19.21/20 17s} 47. Bxe5 {-13.27/22 16s} dxe5 {+19.04/16 17s} 48. P@f2 {-14.67/23 10s} Q@d2 {+20.61/20 17s} 49.
R@f1 {-12.59/20 4.2s} Qxf2 {+22.74/17 16s} 50. Rxf2 {-20.44/20 16s} P@h4 {+22.95/15 15s} 51. B@gl {-24.38/19 10s}
hxg3+ {+22.95/15 16s} 52. Khl {-25.99/20 10s} P@h2 {+25.88/13 15s} 53. Bxh2 {-26.43/20 10.0s} gxf2 {+25.10/14
15s} 54. Q@e3 {-29.60/19 10s} fxel=Q+ {+24.31/13 15s} 55. Qxel {-32.37/20 9.7s} Qxe6 {+22.90/11 14s} 56. B@f8
{-20.27/20 4.7s} B@h6 {+21.71/9 14s} 57. P@f2 {-20.30/22 16s} N@c2 {+24.32/21 14s} 58. Bxg7+ {-28.94/18 10.0s} Bxg7
{+25.24/21 14s} 59. Qe2 {-31.08/19 10s} R@el+ {+26.76/12 13s} 60. R@gl {-33.11/19 10.0s} Rxe2 {+27.03/14 13s}
61. Bxe2 {-26.22/20 8.1s} R@el {+23.03/15 13s} 62. R@f1 {-26.07/20 12s} Rxe2 {+31.81/10 13s} 63. P@d5 {-28.77/18
10.0s} Qf6 {+31.88/9 13s} 64. P@f5 {-30.70/20 10s} B@f4 {+35.08/7 13s} 65. P@g3 {-32.53/19 10.0s} N@d2 {+35.34/9
12s} 66. gxf4 {-31.29/18 3.3s} exf4 {+32.90/8 12s} 67. B@d4 {-35.38/19 17s} Nxd4 {+37.32/9 12s} 68. cxd4 {-43.40/17
9.9s} Nxfl {+34.16/9 12s} 69. Rxfl {-M16/29 7.5s} P@f3 {+49.65/7 12s} 70. N@el {-M14/36 5.7s} fxg2+ {+48.23/3 12s}
71. Nxg2 {-M14/37 4.8s} P@f3 {+49.80/5 12s} 72. N@h4 {-M12/43 4.9s} fxg2+ {+49.22/11 12s} 73. Nxg2 {-M10/53
5.6s} B@f3 {+54.50/9 11s} 74. Bxf4 {-M8/60 5.7s} Bxg2+ {+54.83/5 11s} 75. Kh2 {-M6/245 1.6s} N@f3+ {+61.18/5
11s} 76. Kg3 {-M4/245 0.052s} Q@h2+ {+99.99/3 11s} 77. Kg4 {-M2/1 0s} R@h4# {+99.99/1 0.021s, Black mates} 0-1

Figure 6.12: Game 32 /100
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(a) Evaluation progression for both engines

[Event "RL-Eval"]

[Site "Darmstadt, GER"]

[Date "2019.12.19"]

[White "CrazyAra-0.7.0-Model-OS-45"]

[Black "stockfish-x86_64-modern 2019-12-03"]
[Result "0-1"]

[PlyCount "92"]

[TimeControl "900+10"]

[Variant "crazyhouse"]

1. e4 {book} ¢5 {book} 2. Nc3 {book} Nc6 {book} 3. f4 {book} e6 {-0.24/29 141s} 4. Nf3 {+0.69/28 26s} Be7 {-0.20/26
15s} 5. Be2 {+0.67/40 26s} Nh6 {-0.12/26 28s} 6. O-O {+0.68/38 26s} d5 {0.00/28 16s} 7. d3 {+0.82/38 27s} O-O
{4+0.38/29 34s} 8. Khl {+0.96/36 27s} d4 {+0.65/25 17s} 9. Nb5 {+1.05/45 27s} a6 {-0.54/29 170s} 10. Na3 {+0.95/48
27s} 6 {-0.38/26 27s} 11. Qel {+2.15/30 27s} Ra7 {-0.92/30 125s} 12. Qg3 {+2.49/25 27s} b5 {-1.12/27 36s} 13. Bd2
{+2.78/30 27s} Nf7 {-0.92/27 46s} 14. c4 {+1.90/36 41s} dxc3 {+1.20/23 5.3s} 15. Bxc3 {+0.94/44 40s} b4 {+0.06/27
87s} 16. P@h5 {+0.91/50 26s} Nh6 {+2.08/25 23s} 17. Nc4 {+1.05/44 28s} bxc3 {+1.42/25 15s} 18. bxc3 {+0.89/41
27s} P@g4 {+2.37/24 7.1s} 19. P@g6 {+1.39/31 27s} gxf3 {+4.14/23 9.0s} 20. Rxf3 {+1.29/36 26s} hxg6 {+5.53/25
24s} 21. hxg6 {-0.07/70 41s} P@g4 {+5.81/27 27s} 22. P@g5 {-0.10/69 26s} fxg5 {+12.02/24 15s} 23. fxg5 {+0.30/66
27s} gxf3 {+12.99/24 15s} 24. gxh6 {+0.28/78 26s} fxe2 {+13.70/24 13s} 25. P@h7+ {-0.84/62 41s} Kh8 {+13.73/1
Os} 26. hxg7+ {-0.65/59 26s} Kxg7 {+13.61/1 0s} 27. P@h6+ {-0.53/59 26s} Kxh6 {+18.46/21 7.1s} 28. N@g8+
{-0.58/57 26s} Kg7 {+19.15/24 23s} 29. P@h6+ {-1.62/59 41s} Kh8 {+19.15/1 Os} 30. Nxe7 {-1.60/57 26s} Qxe7
{+19.88/23 15s} 31. g7+ {-1.61/27 27s} Kxh7 {+21.13/23 13s} 32. B@gb6+ {-2.95/30 39s} Kg8 {+21.87/23 11s} 33.
gxf8=N {-3.61/50 26s} R@f1+ {+29.02/23 34s} 34. R@gl {-5.98/29 39s} Rxf8 {+29.15/21 7.1s} 35. Bf7+ {-12.55/20
39s} Kxf7 {+32.22/23 35s} 36. Rael {-13.54/23 25s} B@c7 {+33.76/24 21s} 37. Qg7+ {-16.64/17 25s} Ke8 {+34.61/1
Os} 38. Rxe2 {-17.61/26 25s} P@f2 {+46.67/20 9.0s} 39. Rxf2 {-17.87/14 25s} Qxg7 {+M29/22 12s} 40. hxg7 {-17.35/14
26s} N@g3+ {+M15/51 9.1s} 41. hxg3 {-18.45/12 0.25s} Q@h2+ {+M13/62 10s} 42. Kxh2 {-19.29/10 0.001s} N@g4+
{+M11/69 9.2s} 43. Kh3 {-22.67/8 17s} Nxf2+ {+M9/91 9.7s} 44. Kh4 {-24.29/6 17s} Bxg3+ {+M7/188 9.2s} 45.
Kxg3 {-29.63/4 165} R@g4+ {+M3/245 0.046s} 46. Kh2 {-99.99/2 0.048s} P@g3# {+M1/245 0.020s, Black mates} 0-1

Figure 6.13: Game 63 /100
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[Event "RL-Eval"]

[Site "Darmstadt, GER"]

[Date "2019.12.19"]

[White "stockfish-x86_64-modern 2019-12-03"]
[Black "CrazyAra-0.7.0-Model-OS-45"]

[Result "1-0"]

[PlyCount "103"]

[TimeControl "900+10"]

[Variant "crazyhouse"]

1. e4 {book} c5 {book} 2. Nc3 {book} Nc6 {book} 3. f4 {book} d6 {-0.41/36 26s} 4. Nf3 {+1.70/28 74s} Nf6 {-0.46/41 26s}
5. Bb5 {+2.29/24 8.1s} Bg4 {-0.53/38 265} 6. O-O {+2.48/25 12s} g6 {-0.49/45 26s} 7. e5 {+2.50/23 12s} Nh5 {-1.41/39
40s} 8. exd6 {+4.83/25 17s} Qxd6 {-0.99/45 27s} 9. Ne4 {+4.96/25 13s} Qc7 {-0.76/50 26s} 10. Bxc6+ {+5.32/25 11s}
Qxc6 {-0.90/55 26s} 11. Ne5 {+7.08/23 11s} B@d4+ {-1.83/50 40s} 12. P@e3 {+7.29/25 18s} Bxe5 {-2.32/51 26s} 13.
Qxg4 {+7.50/25 24s} N@f6 {-2.30/49 26s} 14. Nxf6+ {+6.76/27 44s} Nxf6 {-2.95/46 27s} 15. Qe2 {+8.00/27 16s} Bxf4
{-3.49/48 26s} 16. Rxf4 {+8.05/28 35s} Bg7 {-3.86/46 26s} 17. N@e5 {+8.29/29 57s} 0O-O {-2.49/39 28s} 18. Nxcb6
{+8.27/26 9.7s} bxc6 {-1.97/50 26s} 19. B@h4 {+8.75/27 17s} N@h5 {-0.80/49 27s} 20. Rfl {+8.69/27 24s} N@f5
{-0.99/38 26s} 21. Rxf5 {+8.66/26 22s} gxf5 {-1.38/36 27s} 22. B@e5 {+8.61/27 38s} Kh8 {-1.55/47 27s} 23. d3 {+8.99/24
19s} R@g6 {-1.56/43 27s} 24. Kh1 {+10.37/25 27s} P@g4 {-0.89/36 28s} 25. Q@f1 {+12.65/25 15s} Rad8 {-1.97/41 40s}
26. Qxf5 {+14.51/25 14s} Rd5 {-2.07/47 27s} 27. N@c4 {+15.08/25 19s} P@f3 {-2.79/34 27s} 28. gxf3 {+17.07/26 27s}
gxf3 {-3.36/38 27s} 29. Qexf3 {+17.07/27 33s} P@g2+ {-4.04/36 27s} 30. Kgl {+18.18/27 31s} Ng4 {-4.25/34 27s} 31.
Qxgb {+16.60/29 60s} hxg6 {-4.55/45 27s} 32. Bxg7+ {+18.65/25 15s} Kxg7 {-4.79/32 27s} 33. Qxg2 {+19.76/23 25s}
B@f6 {-6.85/28 43s} 34. Qxg4 {+25.05/23 20s} Bxh4 {-10.26/27 40s} 35. Qxh4 {+26.40/24 41s} Q@g5+ {-10.93/24 26s}
36. B@g3 {+29.89/22 21s} Qxh4 {-11.90/28 26s} 37. Bxh4 {+31.09/24 30s} Rf5 {-12.34/25 26s} 38. B@e5+ {+47.84/20
33s} B@f6 {-14.40/28 28s} 39. Bhxf6+ {+M31/26 12s} exf6 {-14.08/34 27s} 40. N@e6+ {+M29/30 21s} fxe6 {-15.48/32
27s} 41. Q@e7+ {+M27/35 15s} Q@f7 {-16.02/30 17s} 42. P@h6+ {+M21/38 14s} Kh7 {-16.66/28 17s} 43. B@g8+
{+M19/44 14s} Kxg8 {-17.42/26 16s} 44. Qxf7+ {+M17/50 13s} Rxf7 {-18.12/24 16s} 45. Q@e8+ {+M15/53 16s} Q@f8
{-19.07/22 16s} 46. N@e7+ {+M13/59 18s} Rxe7 {-19.53/12 16s} 47. R@h8+ {+M11/66 13s} Kxh8 {-20.99/10 0.041s} 48.
Qxf8+ {+M9/98 12s} R@g8 {-23.48/8 16s} 49. P@g7+ {+M7/245 7.5s} Nxg7 {-27.91/6 15s} 50. hxg7+ {+M5/245 0.047s}
Rxg7 {-32.77/4 15s} 51. Q@h6+ {+M3/245 0.046s} B@h7 {-99.99/2 15s} 52. Qhxg7# {+M1/245 0.027s, White mates} 1-0

Figure 6.14: Game 64 /100
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7 Conclusion

In the final chapter we summarize all results and give an outlook for potential future
work.

7.1 Summary

In this work we presented a throrough reinforcement learning setup for a convolutional
neural network to learn the game variant crazyhouse which was initalized by training on
human expert games.

We demonstrated that the learnt model coupled with a MCTS search regime was able to
surpass the playing level of the strongest «3-search engine Stockfish under the presented
time and hardware conditions. We welcome independent third party evaluations under
different hardware and time controls to verify this statement. Neural networks appear to
outscale traditional search engines in particular in highly complex domains for which the
formulation of a handcrafted value function is challenging. The higher move complexitiy
and branching factor within the search tree also seems to favor neural networks with
MCTS because of being able to focus the search on the most promising lines thanks to a
learnt policy function. Despite the increased importance of tactics in crazyhouse, MCTS
search appears to be a valid choice.

By adapting the reinforcement learning setting, only one million games were needed
to surpass Stockfish, the strongest competitor for this variant. The computational cost
amounted for 0.14 GPU years which is significantly lower than for instance KataGo [41]
with a cost of 1.4 GPU years. The creation of KataGo is arguably the most efficient rein-
forcement learning setup for the game of Go at the time of writing.
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7.2 Future work

A replication for classical chess or other chess variants might be helpful to put the achieve-
ment into perspective. The experiment could also be repeated when starting from zero
knowledge to investigate how many self-play games are needed to reach the playing
strength of the initial supervised network. Moreover, the performance was evaluated as
an intermediate result. Future assessment will describe for how long the model contin-
ues to improve in the presented setup. It is also highly probable that the reinforcement
learning setting can be further accelerated by e. g. validating the mentioned approaches
in Section 5.4.

Additionally, the time management system could be further improved by allocating less
time on obvious and more time on complicated positions. Neural network architecture
search continues to be an active research field and upgrading the convolutional neural
network architecture is likely the most promising area for future progress. Additionally,
the support for CPU usage could be optimized to allow future competitions on the same
hardware as traditional engines. Furthermore, the MCTS could be extended to different
domains including continuous and state and/or action spaces. At last the major weak
spots of the MCTS search engine could be addressed, which is its vulnerability to forced
tactical sequences and the inability to share knowledge between different subtrees.

The rapid development of Stockfish for chess after version 8 showed that it is able to
keep up with new neural network engine competitors. It is highly likely that Multi-
Variant-Stockfish will gain significant playing strength in crazyhouse as well in the near
future.
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