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Abstract

In this thesis we evaluate training deep neural networks on human data in chinese chess and combining

them with Monte-Carlo Tree Search. No later than after DeepMinds’ publication of the AlphaGo algorithm,

this cooperation of neural networks and Monte-Carlo Tree Search has proven very successful. Choosing the

networks’ architecture represents a key aspect for the achievable performance. We inspect two architectures,

namely RISEv2 mobile and RISEv3 mobile, both part of the open source chess variant engine CrazyAra. For

each of the two we train a small and a large version. Additionally, we inspect the influence of the average

playing strength covered in the data set used to train a network. In this regard, we use two different data

sets of professional and amateur games. With around 70000 games each, both data sets are comparatively

small to train a neural network in a supervised learning setup. As we compare the performance of successive

approaches we show that the amount and diversity of samples covered in a data set are essential for reaching

high playing strength. Our network architectures output the value of a given state and a probability distribution

over all available moves. As a consequence, we need an appropriate representation for the ground truth of the

move predictions. We show that using a plane representation enables us to increase the generalization ability

of a model by encoding additional information about the spatial correlation of moves into our targets. The

symmetric starting position in chinese chess further allows us to augment a data set by horizontally mirroring

our representation of the board. Doing so we can artificially increase the diversity of samples we feed to the

network. However, against our expectation empirical evaluations show a slight decrease in performance if we

perform this form of data augmentation. Finally, we evaluate our strongest model against Fairy-Stockfish.

Even though Fairy-Stockfish reaches an Elo difference of 322.7 +/- 77.0 relative to our approach, our model

is in the range of other public chess variant engines that were evaluated against Fairy-Stockfish.

Keywords: Supervised Learning, Xiangqi, Chinese Chess, Deep Learning, Monte-Carlo Tree Search.
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1 Introduction

1.1 Motivation

The chess variant Xiangqi, also known as chinese chess is one of the largest in terms of its player base. Despite

the successes of AlphaZero [10] based approaches in a variety of board games, developers have pursued

only little work towards establishing an equally strong engine supporting chinese chess. While lacking some

of the complexity adding moves of western chess (e.g., promotions), chinese chess adds new elements to

the board that influence the dynamics of the game. The so called ”river”, splitting the board in two halves,

prevents Elephant pieces of both parties to move on the opponents’ side of the board, thus rendering them

unable to attack. Furthermore, adding the ”palace” which the General and his two Advisors are not allowed

to leave, fundamentally impacts strategies of attack and defense. Additionally, if we are to train a neural

network in a supervised learning setting, the symmetric starting position of the board opens the possibility for

data augmentation. Data augmentation is successfully performed in many computer vision problems as it

artificially increases the diversity of the data a network is trained on.

CrazyAra is an open source neural network chess variant engine, originally developed for the crazyhouse

chess variant. At the time of this writing, it is the strongest engine for crazyhouse. Through this work, we

extend CrazyAra to additionaly support chinese chess. Next to CCZero1, this renders CrazyAra one of only a

few other AlphaZero based chess variant engines that support chinese chess.

1.2 Problem Formulation

In this work we evaluate multiple approaches for training a neural network on human data in games of chinese

chess. We focus our efforts on a network design that is optimized for its integration into Monte-Carlo Tree

Search (MCTS). This includes the network to be a shared network, one that predicts the value of a given

board state and a probability distribution over all available moves corresponding to this state. This probability

distribution is also referred to as the policy.

In that regard, the first problem we explore is that of choosing an appropriate architecture for our neural

network. We compare the performance of two different architectures, for each a small and a large version.

However, training a neural network in a supervised learning setup requires labeled data. Both, the amount

of available data and its diversity influence the performance of a learned model. Inspired by that, we also

explore the performance of networks trained exclusively on games of professional players, amateur players

and the combination of both. In a related step we augment the combined data set to test whether we can

achieve higher performance. Finally, we explore the possibility of encoding spatial information about moves in

our policy targets.

1https://github.com/NeymarL/ChineseChess-AlphaZero, accessed April 19, 2021
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We compare the performances of our learned models by letting them compete in tournaments. Our strongest

approach will be tested against Fairy-Stockfish.

1.3 Outline

We begin with a discussion of important related work to give some context. This includes the combination of

supervised learning and MCTS in board games, as famously applied by AlphaGo [8]. Additionally, we will

shortly discuss the open source neural network based chess variant engine CrazyAra.

In chapter 3 we define the settings for MCTS as it is used in this work.

Chapter 4 is concerned with the supervised learning setup. We discuss our goals for supervised learning, the

data we use and how we preprocess it into a format that can be effectively used as input to a neural network.

Next we explain how we augment the preprocessed data, so that we artificially increase its diversity. Finally,

we explore the architectures used in this work and evaluate them on standard metrics for supervised learning.

In chapter 5 we will take our trained models to the test. We combine themwith MCTS and conduct tournaments

to determine their final playing strength. In this chapter, we also explore how the models’ performance on

our supervised learning metrics correlate with its final playing strength. The strongest of our models will be

evaluated against other publicly available engines that support chinese chess.

This thesis ends with a conclusion, giving a short summary and ideas for future work.
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2 Related Work

2.1 Supervised Learning for Chess

The ongoing focus of research in deep learning and the availability of modern hardware enable developers

to train powerful deep neural networks on a variety of complex tasks. A general problem in the domain of

board games is the high move complexity. Even the most powerful hardware does not allow to evaluate all

possible move sequences in chinese chess. Therefore, learning algorithms provide promising solutions to the

problem. The evolution of learning algorithms and how we apply them to solve a problem has led to solutions

that surpass superhuman performance in a variety of games, not exclusively board games.

Probably the most famous development came with the publication of AlphaGo [8]. AlphaGo was the first

algorithm to beat a human professional Go player without handicap on a full-sized board. Also, similar to this

thesis AlphaGo is based on a neural network trained on human games and integrated into MCTS. AlphaGo’s

successors reached new milestones. AlphaGo Zero [9] managed to surpass AlphaGo’s performance relying

only on self-play. AlphaZero [10], the generalized version of AlphaGo Zero, was able to play multiple games

next to Go, including chess and shogi.

2.2 CrazyAra

CrazyAra1 is an open source neural network based multi-variant chess engine. Originally developed for the

crazyhouse chess variant, it is the strongest engine for crazyhouse at the time of this writing. It features

the training of neural networks and their integration into MCTS to increase their final playing strength.

Additionally, it provides multiple network architectures, among them the RISEv2 mobile and RISEv3 mobile

architecture which we will explore throughout this work.

The backend of CrazyAra is based on Multi Variant Stockfish2. Multi Variant Stockfish is the extended version

of the Stockfish3 chess engine, supporting a variety of chess variants. As a consequence, CrazyAra provides

the flexibility to easily add new chess variants to the list of supported games.

For this work we integrate Fairy-Stockfishs’4 backend into CrazyAra. Also derived from Stockfish, Fairy-

Stockfish adds support for additional chess variants, including chinese chess. This enables us to embed our

new approach to chinese chess into the CrazyAra project without much effort and based on an efficient

backend. Further, CrazyAra keeps its flexibility to add new chess variants in the future.

1https://github.com/QueensGambit/CrazyAra, accessed April 19, 2021
2https://github.com/ddugovic/Stockfish, accessed April 19, 2021
3https://github.com/official-stockfish/Stockfish, accessed April 19, 2021
4https://github.com/ianfab/Fairy-Stockfish, accessed April 19, 2021
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3 Background

3.1 Monte-Carlo Tree Search

The following is based on the techniques derived by Czech et al. in [2] and [3].

In this work, we combine a trained neural network with MCTS. As the network itself is already trained, it is

able to predict promising moves for a given position. By integrating it into MCTS we use its predictions as

guidance to further improve move selection by evaluation of promising search paths. However, the high move

complexity in chinese chess makes it infeasible to evaluate all reachable board positions. Therefore, positions

have to be evaluated related to how promising they are.

At the beginning of our evaluations we might not have detected all promising moves. So that we reduce the

probability of missing any good move, we need to introduce some exploration into our search. That is, we do

not exclusively evaluate the most promising moves, but instead we sample out of all moves such that the most

promising ones are sampled more frequently. To tackle this, our approach to MCTS is based on the Upper

Confidence Bounds for Trees (UCT) algorithm as originally proposed by Silver et al. [8].

Given the state st at time step t, we select an action at according to:

at = argmaxa(Q(st, a) + U(st, a)) where U(s, a) = cpuctP (s, a)

√︁
∑︁

bN(s, b)

1 +N(s, a)
(3.1)

In this formula, P (s, a) defines the predicted policy and N the corresponding visit counts. The constant cpuct
acts as weighting parameter controlling the influence of the predicted policy P (s, a) relative to the action

value Q(s, a). It is defined by:

cpuct(s) = log(

∑︁

aN(s, a) + cpuct−base + 1

cpuct−base

) + cpuct−init (3.2)

We set cpuct−base to 19,652 and cpuct−init to 2.5.

As a consequence, this form of search initially prefers actions that are evaluated as promising by the neural

network fθ and have low visit counts. With increasing number of evaluations it begins to prefer actions with a

high action value.

If we reach a previously unexplored state s∗, we expand the node and let the neural network evaluate it. We

assign the predicted policy P (s, ai) to each possible action ai. Next, we back-propagate the state evaluation

v∗ through the search path.
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If a terminal node sT is reached, instead of evaluating it by the neural network we use a constant evaluation

of −1, 0 or 1.

In either case, as chinese chess is a zero-sum game, we multiply the state evaluation by −1 after each step

during backpropagation. Additionally, we update the Q-values according to:

Q′(st, a) = Q(st, a) +
1

n
[v∗ −Q(st, a)] (3.3)

We treat unvisited nodes as losses and assign a constant value of −1.

Derived from Czech et al. [3], we use a modified version of MCTS implemented in the CrazyAra project. This

improved version of MCTS is referred to as Monte-Carlo Graph Search (MCGS). Mainly, the search tree is

converted into a directed acyclic graph. This enables the sharing of computation between different branches

and ultimately reduces memory allocation. The search algorithm can access already computed value estimates

of different subtrees if the current state was already explored. Detection of already evaluated states is based

on a transposition table and a hash key. If we reach an already explored state, we create an edge between this

node and the pre-existing subtree.

9



4 Supervised Learning

4.1 Goal

We train a deep neural network on data sets of human games. The goal is to have a shared network that given

a board state predicts both, the value of that state and the policy.

The predicted value is expressing the networks’ expected outcome of the game with respect to the current

player to move. This can either be a loss, a win or a draw. On the other hand, the policy represents the

probabilities for each available move to be played in that position. As we solely train on human games we can

further abstract by saying that the network learns to predict moves that are likely to be played by human

players at the current state of the board.

Once the network is trained it is combined with MCTS to further improve move selection.

4.2 Data set

This work uses two different data sets of games by human players in chinese chess. With around 70000 games

each, both are of approximately the same size but differ fundamentally in the average Elo of players recorded.

The first data set exclusively covers games of professional players in setups as nation wide championships and

comparable events and originates from www.01xq.com1. The average Elo in this data set is 2474, where it is

important to note that for around 70% of games at least one players’ Elo is missing (Figure 4.1). As all games

are recorded games of professional players, the stated average Elo is based on the assumption that all players

have a reasonable high Elo. There is no pattern that suggests that missing Elos are related to their position

relative to the average.

It is also important to state that this particular data set grows only slowly over time as it requires further

recording of professional games. Because the amount of data used to train a model has great impact on its

performance, comparing results of using two different data sets requires them to be of similar size. As a

consequence for this work, this data set defines an upper limit in size for any other data set that is used to

compare against it.

The second data set consists of games played on the online chess platform www.playok.com2. The vast

majority of these games is played by amateur players (only 25 players (0.007%) present in the data set have

an Elo rating above 2000). As www.playok.com has an active chinese chess community, it can be used as

source for building large data sets. To still allow for comparability with the first data set, we filter for games by

two metrics. First, we only use games where both players have an Elo of at least 1615, resulting in an average

Elo of 1630 (Figure 4.1). This step ensures that the present players at least have an basic understanding of

1www.01xq.com, accessed April 19, 2021
2www.playok.com, accessed April 19, 2021
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the dynamics of chinese chess. As these games underlie no official organisation, players are more likely to

leave a game early. Many times early leaving is not due to game specific reasons, but will still be considered a

loss for the leaving party. To prevent most of the noise that comes as a consequence, we only allow for games

that record at minimum 20 plys. The original number of games in this data set was approximately 1.2 million,

therefore the filtered set only remains about 5.8% of its original size.

Next to the difference in the average Elo, the win-draw-loss ratio of both data sets fundamentally differs. The

win-draw-loss ratio for the red player in the data set of professional games consists of 37.07% wins, 35.45%

draws and 27.48% losses. This represents a much more balanced ratio compared to that for the red player in

the set of amateur games, which consists of 50.85% wins, 2.97% draws and 46.18% losses.

Also, with 8440 distinct players present in the data set of professional players, compared to 3543 amateur

players in the other data set, it potentially covers a much broader set of playstyles. Still, random move choices

and easily exploitable mistakes are very rare in games of professional players. With only 70000 games present

in the data set we can expect a network trained solely on professional games not to learn appropriate responses

to such moves.

Finally, its worth noting that both data sets are dominated by a fraction of all players. In our set of professional

games, 20% of all players are present in 78.46% of games (Figure 4.2a). This is similar to our data set of

amateur games, where 20% of players are present in 84.48% of games (Figure 4.2b).

For a detailed comparison see Table 4.1.

16
00

17
00

18
00

19
00

20
00

21
00

22
00

23
00

24
00

25
00

26
00

27
00

Elo Rating

0

10

20

30

40

50

60

N
um

be
r 

of
 P

la
ye

rs

Amateur
Professional
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Figure 4.2: A fraction of all players are present in the majority of games in both data sets. The figure shows
the percentage of games covered by 20% of all players in (a) the set of professional games and
(b) the set of amateur games.

4.3 Preprocessing

Our goal of preprocessing is to represent the data so that it can be effectively used in a computer vision setup.

Similar to what is advised by [1], we build a plane representation of our data sets and use it as input to

the network. The network outputs a value prediction and a policy prediction. We build two different policy

representations to compare their influence on a trained model.

The board in chinese chess has a height of 10 squares and a width of 9 squares. Therefore we encode individual

features as a 10 x 9 plane. When preprocessed, each board state is represented as 28 individual planes of

dimensions 10 x 9:

The first 14 planes encode the 7 different piece types and their current position on the board for each player.

These planes are mostly filled by zeros and their ordering specifies the corresponding piece type. The position

of an individual piece on the board is encoded by a single 1, placed at the index of the piece on the board. For

each board state the first 7 planes correspond to the player at turn.

Next, we use 12 planes to encode the pocket count per piece type. We only have 6 planes per player as the

King cannot be captured. Again, the first 6 planes in this set correspond to the player at turn.

Additionally, the penultimate plane encodes the color of the player at turn. The plane is filled with all zeros if

it is the black players’ turn and all ones otherwise.

Finally the last plane encodes the total move count in FEN notation.

In chinese chess, both players sit across of each other and their pieces are placed directly in front of them.

Usually, the red player is first to move. To preserve this view in our plane representation we mirror all planes

vertically after each move.

For completeness we note that in chinese chess choosing the best move requires no knowledge of any previous

move, given that the current state of the board is known. Therefore we do not include a move history into our

12



plane representation. Also, in the last state of a game (i.e., when the game is finished) no further move is

performed. We discard this state in our plane representation. See Table 4.2 for an overview of the planes.

For each board state we create a value target. The value target encodes the outcome of the game with respect

to the player at turn. We use a single value for each value target, where 1 encodes a win, 0 a draw and −1 a

loss for the player at turn.

We also create a policy target for each board state. The policy target represents the move that was played by

the player at turn in that position. We define two different representations for the policy targets:

Originally our data sets record moves in a chinese chess specific notation according to the World Xiangqi

Federation3. For communication with a chess variant engine we convert all moves into the UCCI (Universal

Chinese Chess Interface) notation, an extended version of the commonly used UCI [4] (Universal Chess

Interface) notation.

The first representation we define for our policy targets is a one-hot vector encoding. We build a vector of all

legal moves in chinese chess using the UCCI notation. This gives us a vector of length 2086 that serves as a

reference. For each board state we build a vector of same length with all 0’s, except for a 1 at the index of the

performed move in our reference vector.

For the second policy representation we use a plane representation similar to [1], but adjusted to moves in

chinese chess. To cover all moves we use 3 sets of planes corresponding to orthogonal moves, diagonal moves

and moves by the Horse piece type:

First, we use 34 planes for orthogonal moves in the four cardinal directions north, east, south and west. This

covers all possible moves by the General, Rook, Cannon and Pawn piece types. Adding 8 additional planes for

moves in diagonal directions northeast, southeast, southwest and northwest allows us to further encode all

moves by the Elephant and Advisor piece types. Finally, the Horse piece type can only exactly move one field

orthogonally followed by one field in diagonal direction. This gives us 8 possible destinations encoded by 8

additional planes.

Feature Planes Type Description

Pieces P1 7 bool Order: {King, Advisor, Elephant, Horse, Rook, Cannon, Pawn}

Pieces P2 7 bool Order: {King, Advisor, Elephant, Horse, Rook, Cannon, Pawn}

Pocket count P1 6 int Order: {Advisor, Elephant, Horse, Rook, Cannon, Pawn}

Pocker count P2 6 int Order: {Advisor, Elephant, Horse, Rook, Cannon, Pawn}

Color P1 1 bool All 1’s if red to move, all 0’s otherwise

Total move count 1 int FEN notation, single value over entire plane

Total 28

Table 4.2: Plane representation of board states used as input to the neural network. Each plane has dimen-
sions 10 x 9. P1 denotes the player at turn.

3www.wxf.ca/wxf/, accessed April 19, 2021
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Feature Planes Description

Orthogonal moves 34 Direction order: {N, E, S, W}

Diagonal moves 8 Direction Order: {NE, SE, SW, NW}

Horse moves 8 Move Order: {2N1E, 1N2E, 1S2E, 2S1E, 2S1W, 1S2W, 1N2W, 2N1W}

Total 50

Table 4.3: Plane policy representation. Each plane has dimensions 10 x 9.

4.4 Data Augmentation

The positioning of pieces at the beginning of a game in chinese chess is symmetric (Figure 4.3a). Horizontally

mirroring the board for each sample in our data set preserves the validity of the sample (Figure 4.3b and

4.3c). We use this form of data augmentation to artificially increase the diversity of input samples our neural

network is exposed to.

The augmentation happens during training so that each set of training samples is loaded twice. The order in

which the training samples are loaded stays random, i.e., whether a particular sample is augmented the first

time or the second time the network sees it, is also random. At the end of training, the network has seen each

sample in the original and augmented version.

Note that we also have to adjust the corresponding policy targets to the mirrored board. As our moves are

represented in the UCCI notation we can mirror the source and destination files.

(a) Starting position. (b) Sample position. Last move in
UCCI notation: c6c5.

(c) Augmented sample position.
Last move in UCCI notation:
g6g5.

Figure 4.3: (a) Shows that the starting position in chinese chess is symmetric. (b) Shows a sample position
and (c) its augmented counterpart. Both positions are valid and augmentation is done by vertically
mirroring the board. The green highlighting shows the last move performed.
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4.5 Input Normalization

It is standard practice to normalize inputs in computer vision tasks. As advised by Czech et al. [1] we

normalize our input planes such that all values lie in the [0, 1] range. For our plane representation, only the

total move count and the pocket counts potentially obtain values outside the [0, 1] range.

The most occurring piece in chinese chess is the pawn with 5 pieces per player. All pawns of any player can be

captured without triggering a loss. Out of this reason we set 5 as the normalization constant for all pocket

count planes.

We observe that 941 is the highest number of plys in all games in our data sets. This represents an outlier far

away from the average number of plys (Table 4.1) and as we denote the total move count in FEN notation, we

set 500 as constant for normalizing the total move count plane.

It is important to note that the normalization constants can also be set to different values. We only normalize

our inputs to benefit the training of a neural network. Training will still work with values that lie outside the

[0, 1] range.

For completeness we note that normalization happens at runtime when the data is loaded during the training

process.

4.6 Architecture

The choice of architecure for a neural network in our setting depends on different criteria. We want the

network to be able to find the best move given some position. This requires it to have high prediction accuracy

for both, the value and the policy targets. To further increase the quality of move selection we combine the

network with MCTS. An important metric for the performance of MCTS is the average number of evaluated

nodes per second (NPS). To achieve high numbers of NPS we need the inference time of the network to be

low. While more complex networks are expected to be able to achieve higher prediction accuracy on the value

and policy targets, they also come with an increased inference time.

For completeness, we also have to consider the networks memory requirements to be compliant with our

hardware (Section 5.1).

In this work we inspect the performance of multiple neural network architectures. Our experiments are based

on the RISEv2 mobile architecture as proposed by Czech et al. [1] and its successor RISEv3 mobile as part of

the CrazyAra project (see Section 2.2). Both are optimized to achieve high performance when combined with

MCTS in the domain of board games.

Residual connections [14] have proven to be highly beneficial when training deep neural networks. To run

neural networks directly on mobile devices, MobileNets were introduced to build light weight deep neural

networks. They focus on size and low inference time while successive versions have introduced new building

blocks to further increase their efficiency. MobileNetV2 [12] introduces the inverted residual block as a

modified version of residual connections to the family of MobileNets. While residual connections in general

enable us to train very deep networks as they address the problem of vanishing gradients, inverted residuals

increase their memory efficiency. Empirical evaluations by Silver et al. [9] have shown that residual connections

enable faster training of neural networks while coming with relatively low cost.
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Furthermore, MobileNetV1 [11] makes use of depthwise separable convolutions. They replace traditional

convolutions for two separate convolutions: A depthwise convolution applying a single filter to each input

channel and a pointwise 1 x 1 convolution to combine the outputs of the depthwise convolution. As a result,

depthwise separable convolutions significantly decrease the associated computational cost. Experiments by

Howard et al. [11] on ImageNet have proven their efficiency, showing that the decrease in computational

effort only comes with a small reduction in accuracy.

Another important building block in our architectures is the Squeeze-and-Excitation (SE) block introduced by

Hu et al. [15]. SE blocks enable the network to learn modulation weights that are applied to the channels of

their input. As a consequence, the network is able to selectively emphasize informative features and suppress

less useful ones.

We will also come across a modified version. As introduced by Woo et al. [18], we will make use of a spatial

attention (SA) module. Instead of focussing on the channels of the input, this module focuses on the spatial

dimensions.

Both, RISEv2 mobile and RISEv3 mobile are based on building a tower of residual connections including

depthwise separable convolutions. For each architecture, we train a small version and a large counterpart.

Depending on the architecture and its size the residual blocks used to build it differ.

First, for the small version of the RISEv2 mobile architecture we use 5 residual blocks (Table 4.4). Each residual

block contains a SE block with the sigmoid nonlinearity, followed by a depthwise separable convolution. The

larger counterpart uses 13 residual blocks instead (Table 4.5). Also, not all 13 residual blocks contain a SE

block. We include SE blocks only in the last 5 residual connections.

For the RISEv3 mobile architecture we follow a slightly different approach. Similar to MobileNetV3 [13] we

place the SE block after the depthwise separable convolution. We move the batch normalization that happens

just before the shortcut connection of a residual block to its beginning instead. As consequence, we append

another batch normalization and ReLU nonlinearity after the residual tower.

Additionally, instead of using the sigmoid nonlinearity for our SE blocks we switch to its linearized counterpart,

the hard sigmoid. Again, we use 5 residual blocks for the small version (Table 4.6) and 13 residual blocks for

the large version (Table 4.7). But this time, even for the large version all residual blocks include a SE block.

While more SE blocks can be expected to perform better on supervised learning metrics, they also increase the

computational effort. In our experiments we investigate the results of that trade off. Note that the SE block in

the last residual block resembles a spatial attention module.

For the construction of our SE and SA blocks see Table 4.11 and Table 4.12, respectively.

Originally the RISEv2 mobile and the RISEv3 mobile architecture follow a pyramid structure [17]. That

means, the number of filters used for the depthwise separable convolution is increased for each residual block.

However, we only follow this approach for the large versions of the architectures. We begin with 128 filters in

the first residual block and increase them by a constant number of 64 additional filters per residual block. The

small versions use a constant number of 512 filters per depthwise separable convolution instead. Additionally,

we set the number of channels to preserve at the output of a residual block to 256 for both architectures. This

is accomplished by a final 1 x 1 convolution after the depthwise separable convolution.
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Layer Name Output Size
RISEv2 mobile

5 Residual Blocks

conv0

batchnorm0

relu0

256 x 10 x 9 conv 3 x 3, 256

res_conv0

res_batchnorm0

res_relu0

res_conv1

res_batchnorm1

res_relu1

res_conv2

res_batchnorm2

shortcut + output

256 x 10 x 9

⎡

⎢

⎢

⎣

(SE-block, r = 2)
⎤

⎥

⎥

⎦

x 13
conv 1 x 1, 512

dconv 3 x 3, 512

conv 1 x 1, 256

value head policy head 1 4500/2085 Table 4.8 Table 4.9/Table 4.10

Table 4.4: Small version of RISEv2 mobile with 5 residual blocks. Note that the output size of the policy head
depends on whether policy targets are represented as planes (4500) or as one-hot encoded vector
(2086).
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Layer Name Output Size
RISEv2 mobile

13 Residual Blocks

conv0

batchnorm0

relu0

256 x 10 x 9 conv 3 x 3, 256

res_conv0_x

res_batchnorm0_x

res_relu0_x

res_conv1_x

res_batchnorm1_x

res_relu1_x

res_conv2_x

res_batchnorm2_x

shortcut + output

256 x 10 x 9

⎡

⎣

conv 1 x 1, 128 + 64x
⎤

⎦ x 8dconv 3 x 3, 128 + 64x

conv 1 x 1, 256

res_conv0_x

res_batchnorm0_x

res_relu0_x

res_conv1_x

res_batchnorm1_x

res_relu1_x

res_conv2_x

res_batchnorm2_x

shortcut + output

256 x 10 x 9

⎡

⎢

⎢

⎣

(SE-Block, r = 2)
⎤

⎥

⎥

⎦

x 5
conv 1 x 1, 576 + 64x

dconv 3 x 3, 576 + 64x

conv 1 x 1, 256

value head policy head 1 4500/2086 Table 4.8 Table 4.9/Table 4.10

Table 4.5: Large version of RISEv2 mobile with 13 residual blocks. Note that the output size of the policy
head depends on whether policy targets are represented as planes (4500) or as one-hot encoded
vector (2086). Also the first 8 residual blocks do not incorporate any SE layer.
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Layer Name Output Size
RISEv3 mobile

5 Residual Blocks

conv0

batchnorm0

relu0

256 x 10 x 9 conv 3 x 3, 256

res_batchnorm0

res_conv0

res_batchnorm1

res_relu0

res_conv1

res_batchnorm2

res_relu1

res_conv2

shortcut + output

256 x 10 x 9

⎡

⎢

⎢

⎣

conv 1 x 1, 512
⎤

⎥

⎥

⎦

x 3
dconv 3 x 3, 512

conv 1 x 1, 256

(SE block, r = 4)

res_batchnorm0

res_conv0

res_batchnorm1

res_relu0

res_conv1

res_batchnorm2

res_relu1

res_conv2

shortcut + output

256 x 10 x 9

conv 1 x 1, 512

dconv 5 x 5, 512

conv 1 x 1, 256

(SE block, r = 4)

res_batchnorm0

res_conv0

res_batchnorm1

res_relu0

res_conv1

res_batchnorm2

res_relu1

res_conv2

shortcut + output

256 x 10 x 9

conv 1 x 1, 512

dconv 5 x 5, 512

conv 1 x 1, 256

(SA block)

batchnorm1

relu1
256 x 10 x 9

value head policy head 1 4500 Table 4.8 Table 4.9

Table 4.6: Small version of RISEv3 mobile with 5 residual blocks. Note that the SE blocks and the SA block
are located after the depthwise separable convolution. We use a kernel size of 3 for all depthwise
separable convolutions but the last two. The last two depthwise separable convolutions use a
kernel of size 5.
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Layer Name Output Size
RISEv3 mobile

13 Residual Blocks

conv0

batchnorm0

relu0

256 x 10 x 9 conv 3 x 3, 256

res_batchnorm0_x

res_conv0_x

res_batchnorm1_x

res_relu0_x

res_conv1_x

res_batchnorm2_x

res_relu1_x

res_conv2_x

shortcut + output

256 x 10 x 9

⎡

⎢

⎢

⎣

conv 1 x 1, 128 + 64x
⎤

⎥

⎥

⎦

x 12
dconv 3 x 3, 128 + 64x

conv 1 x 1, 256

(SE block, r = 4)

res_batchnorm0

res_conv0

res_batchnorm1

res_relu0

res_conv1

res_batchnorm2

res_relu1

res_conv2

shortcut + output

256 x 10 x 9

conv 1 x 1, 896

dconv 5 x 5, 896

conv 1 x 1, 256

(SA block)

batchnorm1

relu1
256 x 10 x 9

value head policy head 4500 Table 4.8 Table 4.9

Table 4.7: Large version of RISEv3 mobile with 13 residual blocks. Note that the SE blocks and the SA block
are located after the depthwise separable convolution. We use a kernel size of 3 for all depthwise
separable convolutions.
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Independent of the choice of architecture, all networks in this work predict the value as well as the policy of a

given board state. To allow this, we include a value and policy head as originally proposed by Silver et al.

[10]:

We use the same value head (Table 4.8) for all networks. It consists of an inital 1 x 1 convolution with 8

channels followed by two fully connected layers to output a single floating point value in the (-1, 1) range.

Layer Name Output Size Value Head 8 Channels

conv0

batchnorm0

relu0

8 x 10 x 9 conv 1 x 1, 8

flatten0

fully_connected0

relu1

256 fc, 256

fully_connected1

tanh0
1 fc, 1

Table 4.8: Value head. Shared by all architectures.

Based on our choice of policy representation (Section 4.3), we investigate two different versions of the policy

head for the RISEv2 mobile architecture. Networks based on the RISEv3 mobile architecture will only use a

plane policy representation.

First, we perform a standard 3 x 3 convolution with 256 filters on the output of the residual tower. Following,

we perform another 3 x 3 convolution but this time with 50 filters corresponding to the number of planes we

use for our plane policy representation. If we represent our policy targets by planes we simply flatten the

result of the last convolution to obtain the final prediction in form of a vector of size 4500 (Table 4.9).

If we instead represent our policy targets as one-hot encoded vector, we add an additional fully connected

layer with 2086 channels at the end of the network. Thus, the prediction comes as vector of size 2086 (Table

4.10).

Note that using a plane policy representation results in a larger prediction vector as we implicitly encode

illegal moves in our representation.

Also note that using a one-hot vector encoding significantly increases the number of parameters (Table 4.13).

In this case, the majority of parameters of the network are located at the final fully connected layer. Further,

we still use 50 filters for our second convolution in the policy head. This is due to the fact that not shrinking

the number of channels in the policy head would result in a more extreme parameter explosion. As discussed,

we set the number of channels that are preserved at the output of every residual block to 256. The spatial

dimensions of our input (10 x 9) are also preserved through the network. As a consequence, the data arriving

at the flatten operation just before the last fully connected layer would be of dimensions 256 x 10 x 9,

compared to 50 x 10 x 9. This would add an additional 48,063,526 parameters in the last fully connected layer,

compared to 9,389,086 additional parameters if we reduce the number of channels to 50. By constructing

the plane policy representation we already know that 50 channels are enough for the network to learn a

meaningful policy mapping. Therefore we keep 50 filters for the second 3 x 3 convolution, even in absence of

a plane policy representation.
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Layer Name Output Size Policy Head Plane Representation

conv0

batchnorm0

relu0

256 x 10 x 9 conv 3 x 3, 256

conv1

flatten0

softmax0

4500 conv 3 x 3, 50

Table 4.9: Policy head if policy targets are represented as planes. Note that the second convolution uses 50
filters as we use 50 planes to represent our policy targets.

Layer Name Output Size Policy Head One-hot encoding

conv0

batchnorm0

relu0

256 x 10 x 9 conv 3 x 3, 256

conv1

batchnorm1

relu1

50 x 10 x 9 conv 3 x 3, 50

flatten0

fully_connected0

softmax0

2086 fc, 2086

Table 4.10: Policy head if policy targets are represented as one-hot encoded vector. Note that the majority of
parameters is present in the fully connected layer. We still use 50 filters for the second convolution
to prevent a further parameter explosion.

Layer Name Output Size Squeeze-and-Excite

pool_avg0

flatten0

fully_connected0

relu0

fully_connected1

sigmoid0/hsigmoid0

shortcut + output

256 x 10 x 9

pool_avg 8 x 8

fc, 128/64

fc, 256

Table 4.11: Sequeeze-and-Excite block as part of residual connections. Note that we use the sigmoid nonlin-
earity for RISEv2 mobile and hard sigmoid for RISEv3 mobile. Also note that we use 128 channels
for the first fully connected layer in case of a SE ratio of 2 (RISEv2 mobile) and 64 channels for a
SE ratio of 4 (RISEv3 mobile).
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Layer Name Output Size Spatial Attention

spatial_avg0

conv0

hsigmoid0

shortcut + output

256 x 10 x 9 conv 7 x 7, 1

Table 4.12: Spatial attention module used in the last layer of RISEv3 mobile.

RISEv2 mobile small RISEv2 mobile large

Policy Plane One-hot Vector Policy Plane One-hot Vector

3,452,817 12,842,003 5,607,313 14,996,499

RISEv3 mobile small RISEv3 mobile large

2,781,045 5,839,221

Table 4.13: Parameter distribution for RISEv2 mobile and RISEv3 mobile.

4.7 Training

All models we train share the same settings for training. The length of training differs only based on the size

of the data set and whether the data is augmented or not. The number of steps is approximately quadrupelt

for training with the combined data set, compared to training on one set exclusively. This is because we feed

twice as many samples to the network and double our validation set. Augmentation is only performed when

training on the combined data set. As the networks sees each sample twice, we further double the number of

iterations. In the case of augmentation, we do not change the size of the validation set.

Training ranges over seven epochs using a batch size of 512. The choice of batch size is based on the available

hardware (Section 5.1) and the goal of comparability between different models and data sets.4 For the

learning rate and momentum we use a one cycle schedule based on [5] (Figure 4.4). We set the maximum

learning rate to 0.175 and the corresponding minimum to 0.00001. The maximum and minimum momentum

is set to 0.95 and 0.8, respectively. The networks’ parameters are initialized according to Xavier weight

initialization [6] with a magnitude of 2.24 as proposed by Czech [2]. Weight updates happen according to

stochastic gradient descent with Nesterov momentum [7]. For L2 regularization we use a weight decay of

10−4.

We denote the neural network we train as fθ with parameters θ. The loss function we want to minimize

combines the value and policy loss and is given by Silver et al. [9] as:

l = α(z − v)2 − π
T log(p) + c||θ||2

4Some models are trained on a Nvidia GTX 1070 with 8 GB of memory. Choosing a larger batch size is not possible as the memory
requirements cannot be satisfied.
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Figure 4.4: Learning rate and momentum in case of training on combined data set. Note that the number of
steps varies depending on the data set.

The target value is represented by z so that v represents the predicted value by the network. π denotes

the target policy and p denotes the corresponding predicted policy. As stated earlier, θ corresponds to the

networks’ weights and c is a regularization constant used for L2 regularization. Finally α acts as a weighting

parameter to control the influence of the value loss with respect to the policy loss. We set α to 0.01 to avoid

overfitting to the value target.

We do not train on all possible variations of architecture, size, data set and policy representation. Instead, we

alternate between training and empirical evaluation. Each time we train a model, we let it compete against

the strongest model of previous experiments. This approach allows us to improve our solution step by step

without wasting much effort on unpromising experiments.

At this point it is important to note that the underlying hardware of the system used to perform competitions

of models has significant influence on the outcome. The order of experiments following our approach might

differ if performed on different hardware. For a detailed discussion of our empirical evaluations we refer to

Section 5.1 and Section 5.2.

Figure 4.5 shows the metric evaluations for the small versions of RISEv2 mobile in case of training on single

data sets. We observe that models based on a one-hot vector encoding for the policy targets outperform all

other models on the policy accuracy (Figure 4.5a). However, we also observe strong overfitting indicating

that these models do not generalize well. The network based on a one-hot encoding and trained on the set

of amateur games reaches a move prediction accuracy of 58.97% and 47.63% on the training (Table 4.15)

and validation set (Table 4.14), respectively. Similar, when trained on the set of professional games it reaches

a move predicion accuracy of 60.58% and 47.86%. If confronted with a playstyle different than what is

covered in the corresponding data sets, these models encounter problems with finding appropriate responses

to previously unseen moves.

We further observe that training on professional games reaches significantly higher value accuracy (Figure

4.5b). One reason might be that professional players tend to follow a well evaluated strategy. Easily exploitable

mistakes while on a winning strategy only happen on rare occasions. That is however not the case in amateur

games.
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Figure 4.5: Supervised learning results for small models based on the RISEv2 mobile architecture. All
models were trained on either professional or amateur games. Exclusively training on games
of professional players reaches high value accuracy. Representing the policy targets as one-hot
encoded vector outperforms a plane policy representation on the policy accuracy. However, it
also leads to strong overfitting.

If we inspect Figure 4.6, we observe that one-hot vector encoded policy targets still perform better on policy

predictions if trained on the combined data set.

Additionally, Figure 4.6a shows improvements in move prediction for our small RISEv3 mobile architecture,

compared to its RISEv2 mobile counterpart. In this case, we even reduced the parameters (Table 4.13) by

19.45% from 3,452,817 to 2,781,045. However, this does not apply to the large models. In neither case we

see an improvement in value accuracy. The large model of RISEv3 mobile even performs slightly worse than

the large model of RISEv2 mobile.
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Figure 4.6: Validation policy and value accuracy for small (S) and large (L) models trained on the combined
data set. RISEv2 mobile based models are trained using a one-hot vector encoding and a plane
representation for the policy targets. For RISEv3 mobile we only use the plane policy representa-
tion. Networks based on a one-hot vector encoding perform best on both metrics.
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Finally, we explore the influence of data augmentation. Figure 4.7 compares the evaluated metrics for the

small and large version of RISEv2 mobile for training on the original and augmented data set.

We observe that augmentation improves move prediction by 1.27% for the small network and 0.92% for the

large network. Further, augmentation slightly reduces overfitting to the policy targets. With augmentation the

difference between training and validation policy accuracy equals 4.54% for the small model and 6.74% for

the large model. Without augmentation the mentioned difference equals 4.92% and 6.59% for the small and

large model, respectively. However, training under augmentation takes twice as many steps as training on the

original data set.
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Figure 4.7: Validation policy and value accuracy for small (S) and large (L) models of RISEv2mobile trained on
the combined data set in original and augmented version. For both versions, the policy accuracy
is slightly increased. The value accuracy stays approximately the same. Note that we do not train
any model based on the RISEv3 mobile architecture with data augmentation.

For a complete overview of training and validation results of all experiments consider Tables 4.14 - 4.17.
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Property Professional Amateur combined

Number of Games 69871 69915 139786

Number of Distinct Events 1304 1 1305

Number of Players 8440 3543 11983

Avg. Number of Moves 80 78 79

Max. Number of Moves 941 360 941

Min. Number of Moves 2 20 2

Max. Elo 2711 2629 2711

Min. Elo 2147 1515 1515

Avg. Elo 2474 1630 2052

Avg. Elo Red 2475 1630 2053

Avg. Elo Black 2473 1630 2052

Wins Red 37.07% 50.85% 43.96%

Wins Black 27.48% 46.18% 36.84%

Draws 35.45% 2.97% 19.20%

Table 4.1: Comparison of data sets of professional games and amateur games.
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Model

RISEv2 mobile
Policy Acc Policy Loss Value Acc Value Loss Combined Loss

Pro Policy Plane (S) 0.4386 1.8694 0.7231 0.5069 1.8558

Pro One-hot (S) 0.4786 1.6810 0.7342 0.4893 1.6691

Amateur Policy Plane (S) 0.4394 1.8616 0.6303 0.8242 1.8512

Amateur One-hot (S) 0.4763 1.6938 0.6344 0.8181 1.6851

Comb Policy Plane (S) 0.4763 1.6809 0.6800 0.6676 1.6708

Comb One-hot (S) 0.5020 1.5616 0.6859 0.6599 1.5526

Comb Policy Plane (L) 0.5089 1.5288 0.6865 0.6588 1.5201

Comb One-hot (L) 0.5211 1.4753 0.6920 0.6520 1.4671

Augment Policy Plane (S) 0.4890 1.6236 0.6800 0.6674 1.6141

Augment Policy Plane (L) 0.5181 1.4938 0.6895 0.6569 1.4854

Table 4.14: Metrics on validation set for all models based on RISEv2 mobile. (S) and (L) refer to small and
large versions of the network, respectively. Bold values mark the best performance of all models.
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Model

RISEv2 mobile
Policy Acc Policy Loss Value Acc Value Loss Combined Loss

Pro Policy Plane (S) 0.5008 1.6646 0.7582 0.4065 1.6537

Pro One-hot (S) 0.5897 1.3036 0.7644 0.3959 1.2955

Amateur Policy Plane (S) 0.5005 1.6312 0.6629 0.7867 1.6230

Amateur One-hot (S) 0.6058 1.2607 0.6679 0.7770 1.2560

Comb Policy Plane (S) 0.5255 1.5014 0.7679 0.3995 1.4912

Comb One-hot (S) 0.5962 1.2621 0.7711 0.3985 1.2545

Comb Policy Plane (L) 0.5748 1.2955 0.7674 0.3915 1.2871

Comb One-hot (L) 0.6303 1.1198 0.7986 0.3704 1.1133

Augment Policy Plane (S) 0.5344 1.4744 0.7626 0.3985 1.4672

Augment Policy Plane (L) 0.5855 1.2392 0.7665 0.3922 1.2319

Table 4.15: Metrics on training set for all models based on RISEv2 mobile. (S) and (L) refer to small and large
versions of the network, respectively. Bold values mark the best performance of all models.

Model

RISEv3 mobile
Policy Acc Policy Loss Value Acc Value Loss Combined Loss

Comb Policy Plane (S) 0.4901 1.6114 0.6804 0.6668 1.6019

Comb Policy Plane (L) 0.5090 1.5248 0.6832 0.6624 1.5162

Table 4.16: Metrics on validation set for all models based on RISEv3 mobile. (S) and (L) refer to the small and
large version of the network, respectively. Bold values mark the best performance of all models.

Model

RISEv3 mobile
Policy Acc Policy Loss Value Acc Value Loss Combined Loss

Comb Policy Plane (S) 0.5427 1.4431 0.7820 0.3892 1.4333

Comb Policy Plane (L) 0.5721 1.2926 0.7607 0.4071 1.2843

Table 4.17: Metrics on training set for all models based on RISEv3 mobile. (S) and (L) refer to the small and
large version of the network, respectively. Bold values mark the best performance of all models.
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5 Empirical Evaluation

5.1 Hardware

On any system we carry out our experiments, the underlying hardware will determine the final performance.

In general, more powerful hardware will allow an engine to perform more evaluations per time step. Especially

in our setting where we limit the maximum time of a single game and combine a neural network with MCTS,

hardware represents a critical aspect.

We compare the playing strengths of models with significant difference in complexity. More complex models

potentially reach higher prediction accuracies, but their higher inference time reduces the achievable NPS. On

the other hand, if the prediction accuracy of a less complex model is sufficiently high, it can outperform a

better predicting and more complex model as the high number of NPS might lead to better move selection. As

a consequence, a small and a large model trained on the same settings and data set can perform equally well

if they hit a sweet spot where the one’s high NPS and the other’s prediction accuracies balance each other out.

In that regard, we define the following hardware used for all our experiments:

CPU: Intel® Core™ i7-6700 CPU @ 3.40GHzx4

GPU (Training & Inference): GeForce® GTX 1070 (8GB)

GPU (Training): GeForce® GTX 1080 Ti (11GB)

Based on this hardware, we measure the NPS for all our networks on a 10 second long search at the starting

position. Figure 5.1 shows that small (S) networks reach significantly higher NPS than their large (L)

counterparts.
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Figure 5.1: NPS measured on 10 seconds search at starting position for all networks.

5.2 Tournaments

In this chapter we inspect the final playing strength of our models. We combine the trained networks with

MCTS and let them compete in tournaments.

Note that the underlying hardware for all tournaments is defined in Section 5.1. The results might differ if

performed on different hardware.

Also consider Section 7.1 for a discussion of the engine specific settings. We use the same settings for all

tournaments, as different settings might lead to different results.

Each tournament is performed in a Round Robin fashion. Each game starts at a random position at maximum

100 plys deep. Per encounter, two models compete in two games while they share the same opening for each

game. We set the Time Control to one minute, with an potential increment of 0.25 seconds.

In our first tournament we primarily inspect the influence of the data set on a models’ playing strength.

Additionally, we get a first idea about the consequence of our policy representation. Table 5.1 shows the

outcome of the tournament. All models are based on the small variant of the RISEv2 mobile architecture

(Table 4.4).

We observe that training on the combined data set yields the best performance. Also, with exception to models

trained on professional games, using a policy plane representation further improves the playing strength of a

model. This is contrary to our supervised learning results (Table 4.14). In supervised learning we observe that

models based on a one-hot encoded policy representation outperform those based on a plane representation on

every metric. This indicates that a plane policy representation helps the model to generalize: When confronted

with unforeseen moves, the model is able to find better responses.

This effect is canceled by training on data of exclusively professional players. As we can observe in Figure

4.5a, training solely on professional games leads to strong overfitting independent of our choice of policy

representation. As a consequence, these models cannot find appropriate responses to moves not occurring in

the data set. Figure 5.2 summarizes our observations by comparing the relative elo of all models.
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Figure 5.2: Elo comparison for small models of RISEv2 mobile architecture.

Table 5.2 shows the results of multiple one-on-one tournaments between RISEv2 mobile based models trained

on the combined and augmented data set.

First, we observe that for large models (Table 4.5) (Comb One-hot (L) vs. Comb Policy Plane (L)) using the plane

policy representation still yields the best performance. The additional parameters as a result of the one-hot

vector encoding (Table 4.13) lead to slightly lower NPS (Figure 5.1). Combined with the lower generalization

ability of this architecture, its playing strength is inferior.

Next, the large model outperforms the small model (Comb Policy Plane (S) vs. Comb Policy Plane (L)). This

is despite the fact that the large model only reaches approximately half the NPS of the smaller one. On the

validation set the policy accuracies (50.89% vs. 47.63%) and the value accuracies (68.65% vs. 68.00%) are

both higher for the large model. As a consequence, the large model needs far less evaluations to select better

moves than its small counterpart.

We make a third observation which is that data set augmentation slightly harms the playing strength of a

model. This is true for the small and the large network and contrary to our expectations. When evaluating

these models in the context of supervised learning (Figure 4.7), we actually notice a small improvement on all

metrics. In this regard we do not find any meaningful reason for this outcome.
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Rank Model Games Score Draws

1 Comb Policy Plane (S) 100 82.5% 27.0%

2 Comb One-hot (S) 100 67.0% 20.0%

3 Amateur Policy Plane (S) 100 53.0% 28.0%

4 Amateur One-hot (S) 100 48.5% 19.0%

5 Pro One-hot (S) 100 27.5% 23.0%

6 Pro Policy Plane (S) 100 21.5% 21.0%

Table 5.1: Tournament of small RISEv2mobile basedmodels. We train a model for each policy representation
and data set (including the combined data set).

Tournament Games Result Draw Ratio Elo difference

Comb One-hot (L)

vs.

Comb Policy Plane (L)

100 0 - 92 - 8 8.0% −552.1 +/− 143.7

Comb Policy Plane (S)

vs.

Augment Policy Plane (S)

200 55 - 52 - 93 46.5% +5.2 +/− 35.3

Comb Policy Plane (L)

vs.

Augment Policy Plane (L)

200 47 - 39 - 114 57.0% +13.9 +/− 31.6

Comb Policy Plane (S)

vs.

Comb Policy Plane (L)

200 3 - 127 - 70 35.0% −251.9 +/− 40.6

Table 5.2: Results of tournaments for small (S) and large (L) models based on the RISEv2 mobile architecture.
Result reads Wins - Losses - Draws with respect to the first model mentioned. The Elo difference
is given relative to the second model mentioned.

At this point we observed that our strongest models are trained on the combined data set while using a plane

policy representation. Furthermore, the large version of RISEv2 mobile performs better than the small version.

In our final experiment we try to improve our best approaches by upgrading the models’ architectures to

RISEv3 mobile.

Table 5.3 shows that upgrading the small model to RISEv3 mobile significantly increases the performance
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(RISEv2 mobile (S) vs. RISEv3 mobile (S)). We observe a relative elo difference of -65.0 +/- 35.4 for the RISEv2

mobile architecture relative to the RISEv3 mobile architecture.

On the contrary, the tournament of our large models (RISEv2 mobile (L) vs RISEv3 mobile (L)) indicates only a

slight improvement. This is unexpected, as we use SE blocks in all 13 residual blocks for the RISEv3 mobile

architecture, instead of only in the last 5 residual blocks as for the RISEv2 mobile architecture (Section 4.6).

It is questionable whether the higher computational effort is worth its cost.

Finally, we observe that even though we significantly improved our small models’ performance compared to

only a small improvement for our large model, the large model still outperforms the small one (RISEv3 mobile

(S) vs. RISEv3 movile (L)). However, the small model now reaches a draw ratio of 42% instead of only 35% in

the case of the RISEv2 mobile architecture. This reflects the scope of our observed improvements for each

model.

We conclude that of all our approaches the large variant of the RISEv3 mobile architecture performs best. In

addition, our models all benefit from the diversity of the combined data set and the plane policy representation.
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Tournament Games Result Draw Ratio Elo difference

RISEv2 mobile (S)

vs.

RISEv3 mobile (S)

200 35 - 72 - 93 46.5% −65.0 +/− 35.4

RISEv2 mobile (L)

vs.

RISEv3 mobile (L)

200 44 - 48 - 108 54.0% −6.9 +/− 32.7

RISEv3 mobile (S)

vs.

RISEv3 mobile (L)

100 3 - 55 - 42 42.0% −200.2 +/− 52.6

Table 5.3: Results of tournaments between RISEv2 mobile and RISEv3 mobile. All models are trained on the
combined data set using a plane policy representation. Result reads Wins - Losses - Draws with
respect to the first model mentioned. The Elo difference is given relative to the second model
mentioned.

5.3 General Observations

We test the influence of the move distribution in our data set used for training on the prediction of the first

move by our large RISEv3 mobile based network. Also, we see how the win-draw-loss ratio of the data set

determines the value prediction in the first state. We then combine our network with MCTS and see whether

a search conducted over 10 seconds yields any changes.

Figure 5.3 shows the five most common moves in the single data sets of amateur and professional players. We

observe, that move h2e2 is by far the most played opening move in both data sets. Further, in both data sets

moves h2d2 and c3c4 are part of the five most common first moves.

As a consequence, these relations are reflected in the combined data set (Figure 5.4b). Additionally, Figure

5.3a shows a visualization of these moves.

If we take a look at Table 4.1, we observe that in the combined data set the red player wins most of the time

(43.96%). As the first player to move in chinese chess is the red player, we expect the network to slightly

prefer predicting a win at the starting position.

Our model predicts move h2e2 with 42.19% certainty for the starting position of any game. Because this move

is highly overrepresented in the data set we used to train it, this is what we expect. We can further observe

that the models’ certainty is higher than the relative occurrence of move h2e2 in all opening moves (38.05%).

Also, as we expected, the models’ value prediction is slightly biased towards a win for the red player. Its value

output is 0.08 and we use a value of 1 to decode a win for the current player.

If we now combine our model with MCTS and perform a 10 second search at the starting position we get a

different result. Table 5.4 shows, that instead of move h2e2 now move c3c4 is evaluated as most promising.

We can further see that move h2e2 has the highest policy evaluation, but as c3c4 is visited much more often,

the search algorithm starts to prefer move c3c4 based on its higher Q-value.
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Move Visits Policy Q-values CP

c3c4 23375 0.1391085 0.1291571 75

h2e2 2688 0.2297229 0.0770245 43

b2e2 1541 0.0680645 0.1034426 59

g0e2 1215 0.1014676 0.0779215 44

g3g4 1069 0.0711157 0.0887958 51

Table 5.4: MCTS evaluation based on the large version of RISEv3 mobile. Search was performed over 10
seconds at the starting position.
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Figure 5.3: Top 5 most common moves in the data sets of (a) amateur players and (b) professional players.

5.4 Relative Strength

In this section we put our strongest approach to the test against version 11.2 of Fairy-Stockfish1. Fairy-Stockfish

is one of the strongest publicly availabe chess variant engines that support chinese chess. In chinese chess,

Fairy-Stockfish reaches a playing strength at least on master level2.

The playing strength of Fairy-Stockfish was evaluated against reference engines. Table 5.5 shows Fairy-

Stockfishs’ Elo relative to other engines.

Our strongest model is the large version of the RISEv3 mobile architecture trained on the combined data set.

The tournament against Fairy-Stockfish is performed under the same settings as our experiments (Section

1https://github.com/ianfab/Fairy-Stockfish, accessed April 19, 2021
2https://github.com/ianfab/Fairy-Stockfish/wiki/Playing-strength, accessed April 19, 2021
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(a) Visualization of the 5 most common first moves.
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(b) Percentage of the 5 most common first moves.

Figure 5.4: (a) Visualizes the 5 most common moves in the combined data set. From left to right, top to
bottom: c3c4, g3g4, b2e2, h2e2, g0e2. (b) Shows their distribution over all possible first moves.
h2e2 is by far the most common.

5.2). We also use the same hardware as described in Section 5.1.

The result of 100 games between the large variant of RISEv3 mobile and Fairy-Stockfish is shown in Table

5.6. Fairy-Stockfish reaches a relative elo of +322.7 +/- 77.0. Compared to the reference engines mentioned

before, our model reaches a performance comparable to that of Sjaak II. Even under consideration of an

uncertainty of +/- 77.0 Elo points, our model reaches a higher relative Elo than MaxQi.
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Reference Engine Relative Elo

Cyclone 0.553 +100

Elephant Eye 3.314 +100

Sjaak II5 +300

MaxQi6 >+500

Table 5.5: Reference engines and Fairy-Stockfishs’ Elo relative to them. Of all tested engines, Fairy-Stockfish
reaches the highest playing strength.

Table 5.6: Tournament results of the large variant RISEv3 mobile and Fairy-Stockfish on 100 games. Our
model was trained on the combined data set and uses a plane policy representation.

Tournament Games Result Draw Ratio Elo difference

Fairy-Stockfish

vs.

RISEv3 mobile (L)

100 76 - 3 - 21 21.0% +322.7 +/− 77.0
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6 Conclusion

6.1 Summary

In this work we evaluated the performance of two different architectures, both optimized for integration into

MCTS. We trained our networks in a supervised learning setting and compared their playing strength based

on multiple tournaments.

Our evaluations showed the significance not only of the size, but also of the diversity of a data set used to train

a neural network in the domain of chinese chess. We demonstrated that even data sets of professional players

can result in models with weak playing strength, if the data set is not sufficiently large. Also we compared two

representations for our policy targets. By encoding information about the spatial correlation of moves into our

policy representation, the network is able to generalize better. This is despite the fact that a more complex

model that uses a one-hot vector encoding outperforms the plane policy representation on all supervised

learning metrics. In a last experiment we showed the influence of MCTS on move selection. Although in our

data set a single move dominates being played in the starting position, MCTS expands the evaluation to a

different move.

Finally, we tested our strongest approach against Fairy-Stockfish. Even though Fairy-Stockfish outperforms

our model, it is able to reach results comparable to other engines that were evaluated against Fairy-Stockfish.

6.2 Future work

Future work should either focus on a larger data set or rely on self-play. The definitive bottleneck of our

approach is the restricted quantity of available data. As a result, our models struggle to generalize. When

training on self-play we can bypass this problem. Projects as AlphaZero [10] show that we are able to build

generalized approaches that reach superhuman performance through self-play. However, self-play drastically

increases the hardware requirements.

A different approach to better performance is further tweaking our network architectures. Especially in the

case of the small variants of RISEv2 mobile and RISEv3 mobile we have seen that minor adjustments can lead

to significant performance inceases.
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7 Appendix

7.1 Engine Settings

Parameter Value

Allow_Early_Stopping true

Batch_Size 16

Centi_CPuct_Init 250

Centi_Dirichlet_Epsilon 0

Centi_Dirichlet_Alpha 20

Centi_Node_Temperature 170

Centi_Q_Value_Weight 0

Centi_Q_Thresh_Init 50

Centi_Q_Thresh_Max 90

Centi_Quantile_Clipping 25

Centi_Random_Move_Factor 0

Centi_Temperature 170

Centi_Temperature_Decay 92

Centi_U_Init_Divisor 100

Centi_Virtual_Loss 100

Context gpu

CPuct_Base 19652

Enhance_Checks false

First_Device_ID 0

Fixed_Movetime 0

Last_Device_ID 0

Max_Search_Depth 99

MCTS_Solver true

Move_Overhead 20

Nodes 0

Precision float16

Table 7.1: Engine settings (Part 1).
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Parameter Value

Q_Thresh_Base 1965

Random_Playout false

Reuse_Tree true

Temperature_Moves 0

Use_Advantage false

Use_NPS_Time_Manager false

Use_TensorRT true

Use_Transposition_Table true

Search_Type mcts

Simulations 0

Threads 4

Use_Raw_Network false

Protocol uci

Contempt 24

Analysis Contempt Both

Clear Hash

MultiPV 1

Skill Level 20

Move Overhead 10

Slow Mover 100

nodestime 0

UCI_LimitStrength false

UCI_Elo 1350

SyzygyPath <empty>

SyzygyProbeDepth 1

Syzygy50MoveRule true

SyzygyProbeLimit 7

Table 7.2: Engine settings (Part2 ).
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