
Sum-Product Loop Programming:
From Probabilistic Circuits to Loop Programming

Viktor Pfanschilling1 , Hikaru Shindo1 , Devendra Singh Dhami1,3 , Kristian Kersting1,2,3

1Computer Science Department, Technical University of Darmstadt, Germany
2Center for Cognitive Science, Technical University of Darmstadt, Germany

3Hessian Center for AI (hessian.AI), Darmstadt, Germany
{viktor.pfanschilling, hikaru.shindo, devendra.dhami, kersting}@cs.tu-darmstadt.de

Abstract
Recently, Probabilistic Circuits such as Sum-Product Net-
works have received growing attention, as they can represent
complex features but still provide tractable inference. Al-
though quite successful, unfortunately, they lack the capa-
bility of handling control structures, such as for and while
loops. In this work, we introduce Sum-Product Loop Lan-
guage (SPLL), a novel programming language that is capable
of tractable inference on complex probabilistic code that in-
cludes loops. SPLL has dual semantics: every program has
generative semantics familiar to most programmers and prob-
abilistic semantics that assign a probability to each possible
result. This way, the programmer can describe how to gen-
erate samples almost like in any standard programming lan-
guage. The language takes care of computing the probabil-
ity values of all results for free at run time. We demonstrate
that SPLL inherits the beneficial properties of PCs, namely
tractability and differentiability, while generalizing to other
distributions and programs, and retains substantial computa-
tional similarities.

1 Introduction
Sum-Product Networks (SPNs) can be viewed as a deep
learning architecture as well as a graphical model with
tractable inference (Poon and Domingos 2011). SPNs are
based on the concept of modeling network polynomials and
are closely related to arithmetic circuits (Darwiche 2003).
They exploit the efficiency of deep learning while abstract-
ing the representation of the underlying model by imple-
menting compositions of functions. As a result of such com-
positions, SPNs can model different distributions efficiently
when compared to pure deep learning models and can com-
pute any marginalization and conditioning query in time lin-
ear to the size of the network. That is, we can answer ques-
tions such as “what is the probability of X being 0.3 and
Y being any value” or ”what is the probability of X being
greater than 0.3 and Y being greater than 0.5” efficiently.
The inherent probabilistic formulation of SPNs enables ef-
fective reasoning about the uncertainty in the underlying do-
main.

Deep probabilistic programming languages (DPPLs) such
as DeepProblog (Manhaeve et al. 2018), Pyro (Bingham et
al. 2019) and Edward (Tran et al. 2017), to name a few, lever-
age the expressive power of deep neural networks within
probabilistic programming systems, especially at inference

A = coinflip(theta1)
if(A) {

B = coinflip(theta2)
} else {

B = A
}

1 -

1 -

+

× ×

A + ¬A ¬B

B ¬B

Figure 1: A simple program with randomness (left) and an SPN
encoding the same distribution(right).

time. These deep neural architectures allow sampling in
the DPPLs but the computation of marginal probabilities re-
mains an issue. Such a computation can quickly become
intractable, especially for continuous variables, thus limit-
ing the types of queries that can be handled efficiently by
DPPLs.

Looking at programs with random outcomes as ways to
encode distributions, for some programs we can find SPNs
or other probabilistic representations that encode the same
distribution as that program (Holtzen, Millstein, and Broeck
2019). For example, consider figure 1 that shows an SPN
representation for a simple program. This probabilistic rep-
resentation is useful because it enables us to learn, as the dis-
tribution is differentiable in its parameters. It also encodes
the joint distribution in a way that enables more complicated
queries like maximum a posteriori (MAP) or most probable
explanations (MPE).

Hand-crafting the equivalent SPN structure for a given
program is tedious, and quite complicated once we intro-
duce recursion or other complex control flow, such as for
and while loops, into the program. In order for an SPN to
be a valid distribution, one of the constraints is that of com-
pleteness which states that each child of a sum node must
cover the same set of variables, that is, have the same scope.
If a loop that generates more samples is introduced, then the
children of the sum node that decides on whether to keep
iterating or to stop will have different scopes, thereby vi-
olating the completeness constraint and rendering the SPN
invalid.

Consider for example the following program where craft-
ing the SPN structure is impossible, due to the number of
involved variables:

SPLL Program Source
SPLL Program

Gradient-
based

Optimizer

Samples
(Data)

Probabilistic Inference

Fitted
SPLL

ProgramSPLL
Compiler

Tractablity
Checker

Tractability
Checker

● Compute likelihood

● Generate samples

Parameters

Figure 2: An overview of SPLL, for the task of parameter estimation. The source program of SPLL is compiled into executable SPLL
programs by the compiler. During the compilation, SPLL checks the tractability of the program. The parameters in the program can be
trained by gradient descent using samples. Using the fitted SPLL program, users can perform different types of probabilistic inference, e.g.
compute the likelihood given samples or generate samples. We note that each data point in SPLL can be structured, e.g. as a list of values. In
the example code, each data point is a list of values, and each value is following a Gaussian distribution which is parameterized by θ1 and θ2.

main = if coinflip(theta1) {
(coinflip(theta2) : main)

} else {
[]

}

To handle these control structures, we introduce Sum-
Product Loop Language (SPLL), a novel programming lan-
guage capable of tractable inference on complex code that
includes loops and produces a probabilistic representation
from the program code. By allowing recursive programs, we
can e.g. model distributions that describe a heterogeneous
number of variables. In SPLL, every program has genera-
tive semantics that most programmers are familiar with and
probabilistic semantics that assign a probability to each pos-
sible result. Thus, SPLL enables programmers to describe
a generative process similarly to any standard programming
language. The language produces code for computing the
probability of values for free. At the core of SPLL lie two
interpreters: one generates a sample from a program and its
parameterization while the other differentiably computes the
probability of a sample given a program and its parameteri-
zation. Overall, we make the following contributions:

1. We propose sum-product loop language (SPLL), a novel
probabilistic programming language capable of handling
loops in complex probabilistic code.

2. We describe the syntax as well as the generative and prob-
abilistic semantics of SPLL (Section 2).

3. We demonstrate that SPLL is at least as capable as Sum
Product Networks and inherits the beneficial properties of
PCs, namely tractability and differentiability(Section 5).

4. We illustrate that SPLL can neatly solve some problems
that are fundamentally unsolvable using Sum Product
Networks (Section 6).
We proceed as follows. We start off by introducing SPLL,

including its corresponding semantics. Then we introduce
the notion of tractable programs within SPLL and then show
the training procedure. Before concluding we show SPLL is
at least as powerful as sum-product networks and also how
SPLL extends beyond them.

2 Sum-Product Loop Language (SPLL)
Figure 2 shows the overall architecture of SPLL as presented
for the task of parameter estimation. The SPLL source
code, written in the manner of a standard programming lan-
guage, is compiled to an SPLL program after going through
a tractability checker. The tractability checker determines if
the source SPLL program is efficiently solvable. The SPLL
program parameters are then trained using gradient descent.
The fitted program can then be used for inference and sam-
ple generation.

2.1 SPLL by Example
For an intuitive introduction, we construct a few compact
SPLL programs and give a brief explanation from the view
of generative semantics. We will cover the path to proba-
bilistic semantics in section 2.3. Our first program will sim-
ply draw from a N (0, 1) distribution.

main = Normal

Our next program will linearly transform the N (0, 1)
samples using parameters Theta to produce a N (µ, σ)-
distribution.

main = Normal * Theta[0] + Theta[1]

We can also produce boolean variables, for example by com-
paring a uniform random sample against a parameter. This
results in a Bernoulli distribution.

main = Uniform >= Theta[0]

Our final example will introduce list construction and con-
ditional statements. It returns either [True] or [].

main = if Uniform >= Theta[0]
then Cons True Null
else Null

2.2 SPLL Syntax
We now introduce the core syntax of SPLL. An SPLL pro-
gram can consist of multiple functions, each assigning an ex-
pression to a name. These functions can call each other, also
recursively, thereby extending existing first-order functional

E → if E then E else E
E → E >= E
E → theta[Z]
E → uniform
E → normal
E → constant V
E → E ∗ E
E → E + E
E → null
E → cons E E
E → call F

Figure 3: The syntax for SPLL.

languages such as DICE (Holtzen, Millstein, and Broeck
2019). SPLL programs can be queried by an interpreter.

Formally, the syntax for SPLL expressions is defined as
in Fig. 3. E refers to the expressions in SPLL and Z refers to
the set of whole numbers and is used to index the θ vector.
The V nonterminal refers to the set of all values supported by
the language and F refers to any function in the SPLL pro-
gram. Overall, SPLL’s syntax follows the syntax of standard
functional programming languages, e.g. Haskell, closely.

2.3 SPLL Semantics
Now that we have covered the syntax, let us turn to the se-
mantics. We first show how to draw samples and then derive
the probability distribution of the generative semantics.

(1) Generative Semantics The generative semantics of
SPLL are accessed by calling the generate function on an
SPLL program. The semantics again draw from functional
languages such as Haskell, albeit with randomness as a first-
class part of the language. The generative semantics of the
syntax elements are aligned with the syntax, i.e. the pro-
grams can be read as a generative description of its distri-
bution. We use cons and null for list construction. Types
in the generative semantics are restricted to Bool, Float, and
Lists. SPLL prevents certain ill-typed expressions at com-
pile time such as using a non-boolean for the condition of an
if-expression.

Loops are implemented in SPLL using recursion. This
as well as the functional language simplify control flow and
thus simplify reasoning about the resulting distribution. θ
denotes the parameters; each index refers to a real-valued
variable marked as subject to parameter optimization. We
adopt the definition of most syntax elements from Haskell.

Theorem 1 (Generative Semantics). Any properly typed
SPLL program with a complete parameterization θ that is
not recursing indefinitely can be used to draw samples from
its distribution.

Proof. The syntax of SPLL programs encompasses a set of
simple functional programs with well-known semantics. We

can execute these programs to generate samples. The only
syntax not usually found in functional languages is our θ-
parameteriziation, which will yield a result as long as the
provided θ-vector is long enough with respect to the indices
used.

(2) Probabilistic Semantics The probabilistic semantics
of SPLL, given a sample, follow a similar recursive formu-
lation. The resulting probabilities will add to 1 if integrated
or summed over all possible outcomes of the program. They
express the chance of that sample being emitted by the gen-
erate function. Some expressions introduce requirements
and assumptions beyond what is readily apparent from their
generative semantics. For example, cons-statements assume
statistical independence of the head and tail elements, which
is trivially true, since SPLL does not allow variable bind-
ings, thus preventing information flow between the subex-
pressions.

We will next prove that the generative and probabilistic
semantics describe the same distribution:

Theorem 2. For any properly typed SPLL program with
a complete parameterization θ, the analytical probability
function accurately represents the empirical sample prob-
ability resulting from the associated generative process.

Proof. In order to demonstrate that the probability function
is aligned with the sample probability, we look at how it
computes probabilities for each sample. In Table 1, we pro-
vide the probability p(x|expr) of a sample x arising from
a program expr. We use these probabilities directly in in-
terpreting the probability function. Intuitively, conditionals
weigh the outcomes of each branch by the probability of the
condition selecting that branch. Meanwhile, comparisons
(which have one integrable and one deterministic argument),
such as p(⊤|a >= b), integrate the probability of the ran-
dom variable up to the deterministic boundary. Please mind
the distinction of which side is deterministic and which side
of c is integrated. As for arithmetic expressions, here we
compute the deterministic operand and use it to invert the
operation to deduce the value of the random subexpression.
For multiplication, we additionally need to apply a correc-
tion factor: The inversion widens the graph of the distribu-
tion. To ensure it integrates to 1, we divide the probability
by y. Finally, keep in mind that we can safely assume inde-
pendence of the subexpressions of cons. These probabilities
were derived from the generative semantics.

These semantics preserve and expect data type consis-
tency. For example, queries such as p(⊤|Normal) will
not arise and the condition in if-statements must return a
boolean. This, as well as the typing rules of the generative
process, guarantee type safety. The type system of the prob-
abilistic semantics ensures that (sub-)expressions that are in-
tegrated or deterministically evaluated in the above compu-
tations are indeed integrable or deterministic. Please refer
back to the semantics in Table 1 for when these conditions
apply and see Section 3 for how these conditions are en-
forced.

p(x|if c then a else b)
= p(⊤|c)p(x|a)
+ p(⊥|c)p(x|b)

p(x|uniform) = φU(0,1)(x) p(x|normal) = φN (0,1)(x)

p(x|constant y) ={
1, if x = y

0, if x ̸= y

p(x|theta[y]) =
{
1, if x = θy
0, if x ̸= θy

p(x|a ∗ b) ={
p(x/y|a)y if det(b) → y

p(x/y|b)y if det(a) → y

p(x|a+ b) ={
p(x− y|a) if det(b) → y

p(x− y|b) if det(a) → y

p(x|null) =
{
1 if x = []
0 otherwise

p(x|cons a b) =

0 if x = []
p(y|a)p(ys|b)

if x = (y:ys)

p(x|call “f”) = p(x|f)
p(⊤|a >= b) =

∫ ∞

c

p(x|a) dx

where det(b) → c

p(⊥|a >= b) = 1−
∫ ∞

c

p(x|a) dx

where det(b) → c

p(⊤|a >= b) =

∫ c

−∞
p(x|b) dx

where det(a) → c

p(⊥|a >= b) = 1−
∫ c

−∞
p(x|b) dx

where det(a) → c

Table 1: Semantics for SPLL expressions. We denote ‘expression a is deterministic with result x’ with det(a) → x; the density function
of a distribution d with φd, and the name of a function and its implementation with “f” and f. The difference of probability densities and
probabilities is left implicit.

3 Tractable Programs via Typing
In order to help the user avoid intractable programs, we pro-
vide rudimentary type inference that returns a compile-time
error if no efficient implementation of the probability func-
tion is available. These probability types describe the oper-
ations we can efficiently do on a given expression. Gener-
ally, the type of an expression depends on the types of its
subexpressions, but can have unique requirements such as
the need to integrate over values of one subexpression or the
need for a subexpression to be deterministic. Therefore, the
type system keeps track of whether an expression is deter-
ministic or allows efficient integration. If SPLL does not
have a tractable solution to the probability function of a pro-
gram, SPLL will raise a type error.

We developed rules that derive the type of an expression.
For example, uniform and normal distributions can be inte-
grated. Parameters θ and constants behave deterministically.

Conditional statements can be integrated over if both
branches can be integrated over. The condition, being of
generative type bool, is either tractably solvable or not; play-
ing no further role in typing beyond failing if it is intractable.

The a >= b operator requires that one argument be deter-
ministic and the other be integrable, as the semantics inte-
grate the random variable up to the deterministic boundary.
Arithmetics are considered tractable if either argument is de-
terministic.

Different algorithms and along with them different typing
rules can coexist within the SPLL compiler. For example,

the solution of addition has two symmetrical variants. It is
possible to add more variants that cover additional cases,
thus expanding the set of valid programs. We will elaborate
on such future expansions in section 8.

Tractable Programs as SPNs Now that we have a way to
guarantee that the program is tractable, we can try to find a
way back towards more familiar tractable structures. First,
let us constrain the set of considered programs further, in
order to characterize programs with useful gradients:
Definition 1. An SPLL program is consistent if it has the
following properties: (A) For any sample, every execution
path resulting in this sample must have finite length. (B) The
probability functions of constant and theta are not called
or integrated.

Note that (A) is true in particular for programs that re-
cursively construct lists, as this way the recursion depth is
connected to the number of list elements. Meanwhile (B)
implies that deterministic expressions are only used where
the probability rules expect them.
Theorem 3. For any sample and consistent program, the
computation of the probability function is equivalent to a
finite SPN. That is, a program induces a set of SPNs, poten-
tially one per sample.

Proof. Looking at the previous formulas for the probability
of a sample in Table 1, large parts collapse at compile-time
into structures familiar from SPNs: leaf nodes containing

primitive distributions, weighted sums, and products. The
indicator functions associated with deterministic behavior
in constant and theta are not actually called upon in the
probability computation of consistent programs. Some ex-
pressions result in behaviors that are not trivially mapped to
an SPN. We now illustrate how these map to SPNs:

(A) Arithmetics query its subexpressions normally, analogous
to an SPN. Since y is deterministic, the transformations
upon x it imparts do not change the distribution funda-
mentally. In order to construct an equivalent SPN, these
transformations can be represented as changes to the leaf
nodes.

(B) Function calls attach another function’s computational
graph in place, potentially recursively. Due to consis-
tency of the SPLL program, the resulting graph has a finite
depth.

(C) The indicator functions in the probabilities of cons and
null develop interesting behavior though: They can be
seen as rejecting samples that are ill-structured. In partic-
ular, cons rejects empty lists or shortens a list for further
evaluation, thus guaranteeing termination for finite lists
when applied recursively. We can also view this behav-
ior as pruning an infinite, recursive SPN down to a finite
SPN, subject to information from the sample.

This way, we can represent the computation of the probabil-
ity function as an SPN, where the structure and parameters
of that SPN depend on compile-time information and run-
time information from the sample.

Tractability Inference in general is known to be an in-
tractable problem (Darwiche 2009). We have demonstrated
that consistent SPLL programs are computationally equiv-
alent to a set of SPNs. With SPNs known to be tractable,
this makes SPLLs tractable, at least with respect to the size
of the equivalent SPN model. The size of this model is de-
pendent on recursion behavior and the SPLL code length.
For any program that can be constrained in its recursion be-
havior, for example by recursively constructing lists, we can
thus show tractability. We discuss the impact of tractability
on the design decisions of SPLL and on future expansions
in Section 8.

4 Training SPLL Programs
Now that we have formalized the syntax and semantics, we
will look at the task of parameter estimation, using the fol-
lowing learning setup:

Given a set of samples X and a consistent SPLL pro-
gram, find the parameterization θ of the program that
best maximizes log-likelihood L of all samples given a
program and parameters: L =

∑
x∈X −log(p(x|θ)).

For this learning setting, it is natural to follow a standard gra-
dient approach for maximizing log-likelihood, and we will
describe that next. However, we have to be a bit more careful
and we will explain that afterward.

4.1 Gradients via Automatic Differentiation
The gradient of the likelihood function with respect to a pro-
gram’s theta[i] can be computed using automatic differen-
tiation. This works well for most expressions except for the
following: Uniform, deterministic expressions and list con-
struction.

Specifically, Uniform distributions do not exhibit useful
gradients. However, when integrated they are very useful.
We thus use them in the argument of comparisons, so as to
produce more understandable code. Furthermore, the indi-
cator functions for deterministic expressions provide no us-
able gradients, but for consistent SPLL programs, this is no
problem, as their probability function will not be evaluated.
List construction has, in spite of appearances, proper gradi-
ents, as the discrete jump between empty and full list does
not happen via variation of theta but only by deconstruct-
ing x.

While it may seem like we can not train thetas, as the
derivative of p(x|theta[y]) is 0 everywhere, this is not true.
Note how other probabilities, namely arithmetics and com-
parisons, depend on the result of deterministic expressions.
The derivatives of their probabilities will contain the deriva-
tives of said result, as opposed to the derivative of the proba-
bility of the result. The derivative of the result of a theta[i]-
expression is a vector with 1 at index i, thus providing a
non-zero base case for SPLL gradients.

Given the gradients and a learning rate λ, we can train
the parameters θ of an SPLL program in the following way:
We initialize θ randomly and iteratively update it using θ :=
θ+λ ·∂L/∂θ. Assuming that the given program is adequate
for the dataset, we can reconstruct the exact distribution of
the data.

Although the above approach seems natural, consider the
following SPLL program:
main = if 0.5 >= Theta[0]
then True
else False

This program is interesting as it has gradients that do not
allow the training of θ at all, even though θ affects the distri-
bution. While it would be easy to brush this program aside
as inconsistent, let us instead investigate remedial actions for
it and programs like it.

4.2 Gradients via Continuous Relaxations
We can use continuous relaxations to produce a gradient that
resembles that of the original distribution, while also being
much better behaved. The consequence of this is giving up
exactness as the relaxations will result in approximate solu-
tions.

In the case where both det(l) → ld and det(r) → rd,
by smoothing the discrete comparison result with a sigmoid,
the probabilities of comparisons can be written as

p(⊤|l >= r) = σ(ld − rd)

p(⊥|l >= r) = 1− σ(ld − rd)

and their corresponding gradients can be computed as:
∇p(⊤|l >= r) = σ′(ld − rd)∇ld − σ′(ld − rd)∇rd

∇p(⊥|l >= r) = σ′(ld − rd)∇rd − σ′(ld − rd)∇ld .

Figure 4: Gradient flow in the SPLL program. Each node repre-
sents a component of the program. Dotted arrows represent the for-
ward path, and colored arrows represent the backward path, respec-
tively. The gradient of an entire SPLL program can be computed
by automatic differentiation even if the program contains complex
control flow such as recursions and conditionals.

The changes affect conditional statements and thus propa-
gate even to recursive calls. Consider how this affects con-
ditionals: With the probability of the condition returned to
smoothness using the above relaxations, we can again com-
pute reasonable gradients for conditional statements.

Let us now return to the above code example. We will
assume a sample of x = True. We will omit a few terms
due to redundancy arising from symmetry. To disambiguate
the factor 0.5 from the program constant 0.5, we will write
out the usually implicit constant expression. The gradient
of the program, ignoring the symmetrical ⊥ case would be
the following:

∂

∂θ
p(⊤|if c then a else b)

= p(⊤|a) · ∂

∂θ
p(⊤|c) + p(⊤|c) · ∂

∂θ
p(⊤|a) + ...

= 1 · ∂

∂θ
p(⊤|constant 0.5 >= theta[0]) + p(⊤|c) · 0

= σ′(0.5− θ0)
∂

∂θ
(constant 0.5)−

σ′(0.5− θ0)
∂

∂θ
(theta[0])

= − σ′(0.5− θ0) ,

where the last step is because θ consists of theta[0] only.
As we can see, we restored the gradient of θ. We can

convince ourselves that the gradient is viable by observing
that the gradient is always negative, most strongly so around
θ = 0.5. From the source code, we can learn that a lower
theta will tend to produce more True samples, as it will
move the program towards the respective side of the deci-
sion boundary of the condition. That is exactly the property
we want to maximize.

We can restore gradients even if a branch of the condi-
tional recurses: Note the original semantics for recursion are

SPLL Generate SPN Sampling

SPLL probability SPN Inference

Figure 5: Mapping between SPN and SPLL functions for simple
SPLL programs.

quite benign; the heavy lifting of computing likelihoods and
gradients happens in the conditional and comparison expres-
sions. The question of whether to recurse or not is decided
by the plausibility of the desired outcome under the recur-
sive and the non-recursive branch, and that decision is made
in the conditional. Thus, restoring gradients to condition-
als is sufficient to restore gradients even to more complex,
recursive programs.

By using Automatic Differentiation, the gradient for an
entire SPLL program, including any recursions can be com-
puted by computing the gradient of each component and ap-
plying the chain rule. Consider the following SPLL pro-
gram:

f = if a >= b
then g
else f

where f is a recursive function that calls itself or the function
g. Figure 4 shows the gradient flow of the program. The
gradient of each component can be computed as presented
above. SPLL allows computing the gradients even if the
program contains complex control flows such as if-then-else
and recursions.

5 SPLL Covers Sum-Product Networks
Because SPNs offer good guarantees of e.g. tractability, it is
desirable to demonstrate that SPLL can fall back on those
guarantees if the problem at hand is sufficiently simple.
These guarantees are also valuable if the SPLL program can
divide the problem into SPN-solvable sub-problems. There-
fore, we will now show how any SPN can be expressed in
SPLL, and which subset of SPLL programs maps cleanly to
SPNs.

Let us start off by showing that we can express any SPN in
our language simply by writing out its sampling procedure.
That is to say, we need an SPLL code’s generative process to
match an SPN’s generative process, i.e. its sampling proce-
dure. Under that condition, their distributions also align (See
Figure 5). Naturally, this symmetry can not hold if the SPLL
is sufficiently complex, such that an SPN with an identical
sampling procedure can not be found.

Let us look now in more detail at how this sam-
pling procedure can be implemented in SPLL and why
the distributions line up: Concatenation of two disjointed
sets of variables and weighted random sampling from

two branches are exactly equivalent to if-then-else and
list concatenation, with the respective probabilities being
weighted sums and products respectively. More explic-
itly, if Bernoulli(p) then A else B is equivalent to a sum
node that associates node A with weight p and node B with
weight (1−p). Similarly, the concatenation of two indepen-
dent lists is equivalent to a product node, in that the probabil-
ity of the concatenation is the product of the probabilities of
the sublists. Consequently, we interpret the list [x1, x2, x3]
as a sample of a trivariate distribution. For completeness,
we should add that proper SPN-equivalence requires the use
of “chaotic” concatenation, where we can e.g. concatenate
[x1, x3] and [x2, x4, x5] into [x1, x2, x3, x4, x5]. This is
necessary because product nodes in SPNs can split the do-
main of variables arbitrarily. This can be implemented in our
language as an operation that rearranges a single list. SPN
nodes with multiple children in SPNs can be represented as
nested statements in our language.

Thus, a minimal grammar for SPLL programs that cover
SPNs would be:

Expr → if (bernoulli p) then Expr else Expr
Expr → normal µ σ

Expr → null
Expr → cons Expr Expr

Every other element of the grammar of SPLL, like function
calls or arithmetic, is there to support more complex pro-
grams or to aid in flexibility of the language.

Experimentally, we confirm the above theoretical consid-
erations by modelling a simple mixture of Gaussians using
an SPN and using our language. To this end, we used two
Gaussians centered at (0.3, 0.3) and (0.7, 0.7), with σ = 0.1
and a mixture ratio of 0.4 to 0.6. We modeled this distri-
bution using the SPLL code shown in Listing 1. We will
compare this to an SPN using SPFlow (Molina et al. 2019).

We find that in both cases, the parameters of the respec-
tive structures match those found in the distribution: SPN
and SPLL both get the mixture ratios and the underlying pa-
rameters of the normal distribution right to within a small
approximation error. Please refer also to Figure 7: We dis-
play the probability density of the list [X,Y] for each model

Figure 6: SPNs are SPLL programs. (a) A valid SPN. (b) An in-
valid SPN caused by recursions. Note that the topmost sum node
in (b) covers different sets of variables in its left and right branch.

Listing 1 Multivariate mixture of Gaussians

main = if Uniform >= Theta[0]
then [Normal * Theta[1] + Theta[2],

Normal * Theta[3] + Theta[4]]
else [Normal * Theta[5] + Theta[6],

Normal * Theta[7] + Theta[8]]

Listing 2 Recursive lists of mixture of Gaussians

main = if Uniform >= Theta[0]
then Null
else Cons
if Uniform >= Theta[1]

then Normal * Theta[2] + Theta[3]
else Normal * Theta[4] + Theta[5]

main

used. That is, for each X and Y , we plot the probability
density of that pair, as modeled by the SPN and the SPLL
program. Both models exhibit a stronger peak at (0.7, 0.7)
and a weaker peak at (0.3, 0.3), which reflects the method
of data synthesis, including the mixture ratio. The resulting
figures line up to the point of being indistinguishable.

6 SPLL Moves Beyond SPNs
To illustrate why recursive programs can generate more

varied distributions than SPNs, consider for example a pro-
cess that generates one sample from a Gaussian mixture
distribution per iteration, with some probability of stopping
each time. The resulting distribution contains lists of vari-
able length with no upper limit, where longer lists are ex-
ponentially less likely. Distributions such as this can not be
modelled by SPNs. Since the resulting number of variables
varies, an SPN would need to cover a heterogeneous number
of variables, which would violate completeness. For exam-
ple, consider the SPN in Fig. 6(a) which is defined over two
random variables X1 and X2. Note that the scope of the
childern of the only sum node is {X1, X2} as both the ran-
dom variables are present on both the left and right child
product nodes. Now consider the SPN in Fig. 6(b) obtained
after recursion on the underlying SPN in Fig. 6(a) where
one of the leaf node is replaced by the underlying SPN but
can contain a new random variable X3. The children of the
topmost sum node then have the scope {X1, X2} for the
left child product node and {X1, X2, X3} for the right child
product node thus specifying different scopes and violating
the completeness property of the SPN.

With SPLL, we can solve this by modelling the generative
process (see Listing 2). The likelihood function correctly
determines the amount of times the recursion condition fired
before failing and consequently provides a gradient for opti-
mizing θ0. The gradient is also passed through to the param-
eters of the Gaussian distributions. While estimating θ0 is of
course possible from just the list lengths, SPLL can do this
without much modelling work and for more complex pro-
grams where connections are not as readily apparent. For

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.2

0.4

0.6

0.8

1.0

Y

Probability density function (SPN)

0

2

4

6

8

10

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0

0.2

0.4

0.6

0.8

1.0

Y

Probability density function (SPLL)

0

2

4

6

8

10

Figure 7: Comparison of the learned density functions of an SPN (left) and SPLL (right). We can see that the density functions learned by
both are identical thus showing empirically that SPLLs are at least as powerful as SPNs.

such a recursive mixture model as well as a recursive sim-
ple gaussian model, we conducted experiments by sampling
from the ground truth parameterization 1000 times and train-
ing a random parameterization via maximum likelihood.

The convergence behavior of these programs can be seen
in Figure 8. We trace the path parameters take while the
program is training, in relation to the ground truth configu-
ration. Note that in the mixture model, most of the parame-
ters except θ0 go through a phase of non-monotonic behav-
ior while the program can not provide a clear assignment
of samples to mixture components. Note that due to model
symmetry it is possible for θ to converge on an inverted but
equivalent parameterization. This would not affect sample
quality or log-likelihood.

7 Related Work
Deep probabilistic programming languages (DPPLs) such as
DeepProblog (Manhaeve et al. 2018), Pyro (Bingham et al.
2019) and Edward (Tran et al. 2017) have been developed to
enable users to write probabilistic programs as SPLL. How-
ever, they do not ensure tractable inference. DICE (Holtzen,
Van den Broeck, and Millstein 2020) is a probabilistic pro-
gramming language that can perform exact discrete proba-
bilistic program inference. DICE supports tractable infer-
ence but unlike SPLL only on discrete, non-recursive pro-
grams. Church (Goodman et al. 2008) is a functional lan-
guage for generative models. It has a similar motivation
as SPLL to introduce a language to describe stochastic pro-
cesses in a functional programming style. However, church
has less of a focus on tractability and thus can not provide
the guarantees we do around tractable programs. For both
languages, continuous relaxations for training have not been
proposed yet.

Another important line of research is that of logic-based
probabilistic programming (Raedt, Kimmig, and Toivo-
nen 2007; Riguzzi and Swift 2011; Fierens et al. 2014;
Vlasselaer et al. 2015). In contrast to these frameworks,
SPLL defines its own syntax and semantics supporting tra-

ditional programming language constructs.
Probabilistic models to perform tractable inference have

been proposed such as Sum Product Network (SPNs) (Poon
and Domingos 2011) and Probabilistic Sentential Deci-
sion Diagrams (PSDDs) (Kisa et al. 2014). These mod-
els are called Probabilistic Circuits (PCs) (Choi, Vergari,
and Van den Broeck 2020). However, these models are not
capable of handling structured programs that contain loops
or recursion. SPLL offers the capability of tractable infer-
ence and the handling of structured programs. Sum-Product
Probabilistic Language (SPPL) has been proposed as a gen-
eralization of SPNs to a programming language with an ex-
tension of symbolic expressions (Saad, Rinard, and Mans-
inghka 2021). SPPL achieves tractable exact inference.
However, it does so by restricting the user to bounded loops.

Since we pass a gradient through a program, we can also
compare our work to Continuous Relaxations (Berthet et al.
2020; Petersen et al. 2021), which smoothes over discrete
control flow decisions by interpolating the outcomes. In
contrast, SPLL offers exact computations, where the dis-
tribution of the generator is guaranteed to align with that
of the likelihood function. Meanwhile Continuous Relax-
ations can lead to unintended program behavior, where the
act of relaxing control flow conditions can lead to e.g. im-
possible paths in the program being possible. The cost of
this exactness is that some programs can not be expressed
in SPLL and some others scale badly in their computational
cost. (Petersen et al. 2021) has proposed to use continuous
relaxations to produce a gradient that resembles the original
distribution, while also being much better behaved. SPLL
adopts the approach to compute the gradients for parameters
in places where it not otherwise possible.

Previous work has addressed the integration of sym-
bolic programs and neural networks (Manhaeve et al. 2018;
Yang, Ishay, and Lee 2020; Evans and Grefenstette 2018;
Rocktäschel and Riedel 2017; Mao et al. 2019). SPLL
can be placed here as a new approach to use a differ-
entiable probabilistic programming language for neuro-
symbolic learning, where the available set of computations

0 50 100 150 200 250 300
training epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

pa
ra

m
et

er
s (

th
et

a)
 a

nd
 g

ro
un

d
tru

th
s

4500

4250

4000

3750

3500

3250

3000

2750

lo
g-

lik
el

ih
oo

d

0 50 100 150 200 250 300
training epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

pa
ra

m
et

er
s (

th
et

a)
 a

nd
 g

ro
un

d
tru

th
s

3600

3400

3200

3000

2800

2600

2400

lo
g-

lik
el

ih
oo

d

Figure 8: Training SPLL programs: Parameter convergence and likelihood fit(blue) for variable-length Gaussian sequences (left) as well as
for variable length mixture-of-Gaussian sequences(right). Dashed lines indicate the ground truth of the respective parameter. Slightly off
convergence points can arise from the sampling error of the training set.

on the symbolic representation receives a new degree of
freedom.

8 Conclusions
Triggered by the success of probabilistic circuits such as
sum-product networks, we have moved beyond circuits and
introduced Sum-Product Loop Language, a novel program-
ming language that is capable of tractable inference on com-
plex probabilistic code that includes recursion. SPLL has
dual semantics: every program has generative semantics fa-
miliar to most programmers and probabilistic semantics that
assign a probability to each possible result. This way, the
programmer can describe how to generate samples almost
like in any standard programming language. The language
takes care of computing the probability values of all results
for free at run time. Overall, we showed that SPLL inher-
its the beneficial properties of PCs, namely tractability and
differentiability while generalizing to other distributions and
programs.

Our work provides several interesting avenues for future
work on tractability for more complicated programs, the in-
troduction of memory, more supported queries, and incorpo-
rating deep learning by means of neural function calls.

Tractability. Limitations of the language arise from the
tractability of the probabilistic semantics: It is quite sim-
ple to produce code for which the analytical computation of
the probability is impossible. For example, we might en-
counter problems in a program that adds two random vari-
ables: Computing the probability of the result generally in-
volves integrating over all possible values of one variable,
making even a relatively simple program intractable. Con-
sider, however, the case of the sum of two Gaussian vari-
ables. The sum of two Gaussian-distributed variables is
again Gaussian. Such an algorithm and many like it could
be added to SPLL. Thus, it is possible to expand tractability
beyond what our language currently offers. In such cases,
identifying and pushing the boundary of intractability will
be important future work.

Memory. Another interesting avenue is the intro-
duction of memory: If we could tractably compute
p(x|let y = e1 in e2), we would introduce many differ-
ent interesting programs into the language. These programs
could for example be made efficient if the result ”witnesses”
y as would be the case in [y, f(y)], if we restrict the permitted
subexpressions, or if the type of y is small enough to allow
enumeration. However, care must be taken to not acciden-
tally allow intractable programs. For example, a program
like
main = let x1 = expr
in let x2 = expr2 x1
in expr3 x2

might result in evaluating a number of execution paths ex-
ponential in the number of variables xi.

Queries. SPNs support many more queries than SPLL.
Implementing these queries for the SPN-equivalent subset of
the language should straightforwardly follow their SPN im-
plementation, while for the wider language, this might offer
interesting insights into degrees of tractability while making
the language more usable. Instead of implementing these
as different interpretation methods of the same program, a
promising approach could be to implement them within the
language. For example, if we refer back to the recursive lists
of Gaussians in Listing 2, we might query the length of the
resulting list like this:
query = length main >= 2

to find the probability that a list is at least 2 elements long.
Using this approach, enabling more queries would entail ex-
panding the expressiveness of the language fundamentally.

Neural Function Calls. In order to integrate SPLL with
Neural Networks, which offer high performance in many
fields of machine learning, we could introduce a new syntax
element. First, we impose that compatible neural networks
must output their predictions “distribution-like”, e.g. using
a softmax layer. The probability function is the output of the
neural network, while the generate function draws a sample

from this distribution. Implementing it this way also guar-
antees that we can train the neural network end to end, as the
gradients can be propagated to the softmax layer. We could
then solve tasks such as MNIST-Addition (Manhaeve et al.
2018) as simply as:

main img1 img2 =
(read_NN img1) + (read_NN img2)

With these additions to SPLL, it becomes feasible to tackle
problems that integrate neural and symbolic representations
and move into the domain of neuro-symbolic AI.

Acknowledgements
This work was supported by the Federal Ministry for Eco-
nomic Affairs and Climate Action (BMWK) AI lighthouse
project “SPAICER” (01MK20015E), the EU ICT-48 Net-
work of AI Research Excellence Center “TAILOR” (EU
Horizon 2020, GA No 952215), and the Collaboration Lab
“AI in Construction” (AICO) with Nexplore/HochTief. The
work has also benefited from the Hessian Ministry of Higher
Education, Research, Science and the Arts (HMWK) cluster
projects “The Third Wave of AI” and “The Adaptive Mind”.

References
Berthet, Q.; Blondel, M.; Teboul, O.; Cuturi, M.; Vert, J.-P.;
and Bach, F. 2020. Learning with differentiable pertubed
optimizers. In NeurIPS.
Bingham, E.; Chen, J. P.; Jankowiak, M.; Obermeyer, F.;
Pradhan, N.; Karaletsos, T.; Singh, R.; Szerlip, P.; Horsfall,
P.; and Goodman, N. D. 2019. Pyro: Deep universal prob-
abilistic programming. The Journal of Machine Learning
Research 20(1):973–978.
Choi, Y.; Vergari, A.; and Van den Broeck, G. 2020. Prob-
abilistic circuits: A unifying framework for tractable proba-
bilistic models.
Darwiche, A. 2003. A differential approach to inference in
Bayesian networks. JACM.
Darwiche, A. 2009. Modeling and reasoning with Bayesian
networks. Cambridge university press.
Evans, R., and Grefenstette, E. 2018. Learning explanatory
rules from noisy data. JAIR.
Fierens, D.; den Broeck, G. V.; Renkens, J.; Shterionov, D.;
Gutmann, B.; Thon, I.; Janssens, G.; and Raedt, L. D. 2014.
Inference and learning in probabilistic logic programs using
weighted boolean formulas. Theory and Practice of Logic
Programming 15(3).
Goodman, N. D.; Mansinghka, V. K.; Roy, D. M.; Bonawitz,
K. A.; and Tenenbaum, J. B. 2008. Church: a language for
generative models. In UAI.
Holtzen, S.; Millstein, T.; and Broeck, G. V. d. 2019. Sym-
bolic exact inference for discrete probabilistic programs.
arXiv preprint arXiv:1904.02079.
Holtzen, S.; Van den Broeck, G.; and Millstein, T. 2020.
Scaling exact inference for discrete probabilistic programs.
Proc. ACM Program. Lang.

Kisa, D.; Van den Broeck, G.; Choi, A.; and Darwiche, A.
2014. Probabilistic sentential decision diagrams. In KR.
Manhaeve, R.; Dumancic, S.; Kimmig, A.; Demeester, T.;
and De Raedt, L. 2018. Deepproblog: Neural probabilistic
logic programming. Advances in Neural Information Pro-
cessing Systems 31.
Mao, J.; Gan, C.; Kohli, P.; Tenenbaum, J. B.; and Wu, J.
2019. The Neuro-Symbolic Concept Learner: Interpreting
Scenes, Words, and Sentences From Natural Supervision. In
ICLR.
Molina, A.; Vergari, A.; Stelzner, K.; Peharz, R.; Subra-
mani, P.; Mauro, N. D.; Poupart, P.; and Kersting, K. 2019.
Spflow: An easy and extensible library for deep probabilistic
learning using sum-product networks.
Petersen, F.; Borgelt, C.; Kuehne, H.; and Deussen, O. 2021.
Learning with algorithmic supervision via continuous relax-
ations. In NeurIPS.
Poon, H., and Domingos, P. 2011. Sum-product networks:
A new deep architecture. In UAI.
Raedt, L. D.; Kimmig, A.; and Toivonen, H. 2007. Problog:
A probabilistic prolog and its application in link discovery.
In Veloso, M. M., ed., IJCAI.
Riguzzi, F., and Swift, T. 2011. The pita system: Tabling and
answer subsumption for reasoning under uncertainty. The-
ory and Practice of Logic Programming 11(4-5):433–449.
Rocktäschel, T., and Riedel, S. 2017. End-to-end Differen-
tiable Proving. In NeurIPS.
Saad, F. A.; Rinard, M. C.; and Mansinghka, V. K. 2021.
Sppl: Probabilistic programming with fast exact symbolic
inference. In ICPLI.
Tran, D.; Hoffman, M. D.; Saurous, R. A.; Brevdo, E.; Mur-
phy, K.; and Blei, D. M. 2017. Deep probabilistic program-
ming.
Vlasselaer, J.; Van den Broeck, G.; Kimmig, A.; Meert, W.;
and De Raedt, L. 2015. Anytime inference in probabilistic
logic programs with Tp-compilation. In IJCAI.
Yang, Z.; Ishay, A.; and Lee, J. 2020. Neurasp: Embracing
neural networks into answer set programming. In IJCAI.

	Introduction
	Sum-Product Loop Language (SPLL)
	SPLL by Example
	SPLL Syntax
	SPLL Semantics

	Tractable Programs via Typing
	Training SPLL Programs
	Gradients via Automatic Differentiation
	Gradients via Continuous Relaxations

	SPLL Covers Sum-Product Networks
	SPLL Moves Beyond SPNs
	Related Work
	Conclusions

