
Computer Science
Department
Artificial Intelligence and
Machine Learning Lab

Utilizing Variance and
Uncertainty in Monte-Carlo
Tree Search
Bachelor thesis by Martin Andreas Růžička
Date of submission: April 4, 2023

1. Review: Prof. Dr. Kristian Kersting
2. Review: M.Sc. Johannes Czech
Darmstadt

Vorlage „Erklärung zur Abschlussarbeit“ Dezernat II – Studium und Lehre, Hochschulrecht Stand: 20.03.2020

Erklärung zur Abschlussarbeit gemäß § 22 Abs. 7 APB TU Darmstadt

Hiermit versichere ich, Martin Andreas Růžička, die vorliegende Master-Thesis / Bachelor-Thesis
gemäß § 22 Abs. 7 APB der TU Darmstadt ohne Hilfe Dritter und nur mit den angegebenen Quellen
und Hilfsmitteln angefertigt zu haben. Alle Stellen, die Quellen entnommen wurden, sind als solche
kenntlich gemacht worden. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Falle eines Plagiats (§38 Abs.2 APB) ein Täuschungsversuch vorliegt, der dazu
führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch verbraucht wird.
Abschlussarbeiten dürfen nur einmal wiederholt werden.

English translation for information purposes only:

Thesis Statement pursuant to § 22 paragraph 7 of APB TU Darmstadt

I herewith formally declare that I, Martin Andreas Růžička, have written the submitted thesis
independently pursuant to § 22 paragraph 7 of APB TU Darmstadt. I did not use any outside support
except for the quoted literature and other sources mentioned in the paper. I clearly marked and
separately listed all of the literature and all of the other sources which I employed when producing
this academic work, either literally or in content. This thesis has not been handed in or published
before in the same or similar form.

I am aware, that in case of an attempt at deception based on plagiarism (§38 Abs. 2 APB), the thesis
would be graded with 5,0 and counted as one failed examination attempt. The thesis may only be
repeated once.

Datum / Date: Unterschrift/Signature:

________________________ ______________________________________ 04.04.2023

1 Abstract

In this thesis we evaluate two approaches to improving the open-source engine CrazyAra
in chess and Crazyhouse. Both of these approaches originate from KataGo, where they
have been successfully applied. The first approach uses the variance during Monte-Carlo
tree search by giving more playouts to nodes with higher variance. The second approach
trains the neural network to predict the difference between its current evaluation and a
weighted sum of search-based evaluations in the current and subsequent positions.
We discuss different ways of doing this and test these approaches against an unmodified
version of CrazyAra. The evaluation will show that the approach with the variance does
not bring an improvement, but rather a deterioration. Unfortunately, we were not able to
test the second approach, but the analysis of the data looks promising for future work.

3

2 Zusammenfassung

In dieser Thesis evaluieren wir zwei Ansätze, die open-source engine CrazyAra in Schach
und Crazyhouse zu verbessern. Beide dieser Ansätze stammen von KataGo, wo sie
erfolgreich angewandt wurden. Der erste Ansatz nutzt die Varianz während Monte-Carlo
Baumsuche, indem er Knoten mit höherer Varianz mehr Playouts gibt. Der zweite Ansatz
trainiert das neuronal Netz darauf, die Differenz zwischen seiner aktuellen Evaluation
und einer gewichteten Summe von auf Suche basierenden Evaluationen in der aktuellen
und den folgenden Positionen, vorherzusagen.
Wir diskutieren verschiedene Möglichkeiten dies umzusetzen und testen diese Ansätze im
Vergleich mit einer unmodifizierten Version von CrazyAra. In der Evaluation wird sich
zeigen, dass der Ansatz mit der Varianz keine Verbesserung mit sich bringt, sondern eher
eine Verschlechterung. Den zweiten Ansatz konnten wir leider nicht mehr testen, die
Analyse der Daten sieht aber erstmal vielversprechend aus.

4

Contents

1 Abstract 3

2 Zusammenfassung 4

3 Introduction 7
3.1 Motivation . 7
3.2 Outline . 7

4 Background 9
4.1 Crazyhouse . 9
4.2 Variance . 9
4.3 MCTS . 11

4.3.1 Four Steps Of MCTS . 11
4.3.2 Properties Of MCTS . 12
4.3.3 Multi-Armed Bandit . 13

4.4 Exploration . 14
4.4.1 Upper Confidence Bounds . 14
4.4.2 Upper Confidence Bound For Trees 14
4.4.3 Predictor Plus Upper Confidence Bounds 15
4.4.4 Polynomial Upper Confidence Bound for Trees 15
4.4.5 MCTS And Multi-Threading . 16

4.5 Uncertainty . 16

5 Related Work 17
5.1 Papers . 17
5.2 KataGo . 18
5.3 CrazyAra . 19

5

6 Utilizing Variance 20
6.1 Running Formula . 20
6.2 Parameter Tuning . 21

6.2.1 Addition Vs. Multiplication . 21
6.2.2 Initial Value . 21
6.2.3 Standard Deviation Vs. Variance 22
6.2.4 Parameters . 22

7 Utilizing Uncertainty 23
7.1 Theory . 23
7.2 Methodology . 23

8 Evaluation 25
8.1 Methodology . 25

8.1.1 Cutechess . 25
8.2 Results . 26

8.2.1 Multi-Armed Bandit . 26
8.3 Evaluation Of Variance . 26

8.3.1 First Tests: Classical Chess With 200 Nodes 27
8.3.2 Further Tests In Chess And Crazyhouse 28

8.4 Uncertainty . 31

9 Discussion 33
9.1 Problems During The Evaluation . 33
9.2 Discussion Of The Results . 34
9.3 Possible Reasons For The Results . 35

10 Conclusion 36
10.1 Summary . 36
10.2 Future Work . 36

6

3 Introduction

3.1 Motivation

When considering which move to evaluate next, the AlphaZero(A0) framework[18] does
not use the variance of the moves. But humans certainly do, and it also makes sense
intuitively: When basing your decision on an evaluation, you want to be confident that the
evaluation is accurate. However, a high variance on an evaluation implies that different
branches give drastically different evaluations. This leaves us unsure which evaluation
to trust, in an extreme case we would not know whether it is a winning or a losing
position. Therefore it is a good idea to take a closer look at this move in order to improve
the accuracy of our evaluation. Wu et al.[25] introduce the variance as a factor in the
exploration part of the PUCT-formula, such that a higher variance makes the respective
move more likely to be considered.
Our second approach to improving the A0 framework is to consider uncertainty. The
network should predict it’s own short-term error, i.e. the difference between the current
evaluation and the evaluation it would get after performing search or in a few moves.
Then we scale the playouts so that playouts where we are confident about the evaluation
count more than playouts where we are uncertain.
In this thesis, we will evaluate whether these two approaches can improve the performance
of the engine CrazyAra[7].

3.2 Outline

In the following background chapter 4 we will introduce the necessary terms for this
thesis and introduce Monte-Carlo Tree Search. After that, in chapter 5 we will give a
brief overview of related work on MCTS engines and papers on variance and uncertainty.
Chapter 6 will present different ways of utilizing variance that we have experimented

7

with in this thesis. Chapter 7 will describe our approach and methodology for utilizing
the uncertainty. In chapter 8 we document our evaluation. This will be a primary test of
utilizing variance in Multi-Armed-Bandits and then an extensive evaluation of different
approaches to use the variance in MCTS. The chapter finishes with some notes on our
preparation to use the uncertainty in MCTS. In the following chapter 9 we discuss those
results, identify problems during our evaluation and discuss possible reasons for our
results. We conclude the thesis in chapter 10 with a summary and an outlook to future
work.

8

4 Background

In this chapter, we will first briefly introduce the problem domain, crazyhouse, give
a comprehensive introduction to the empirical variance, then give an overview of the
Monte-Carlo Tree-Search (MCTS) algorithm and finish with some notes on uncertainty.

4.1 Crazyhouse

Crazyhouse is a chess variant that is played with the same starting position and pieces
as in normal chess. However, when a player captures an opponent’s piece, they add that
piece to their own pocket. Instead of making a normal, legal, chess move, the player
can now also drop a piece from their pocket to a free square on the board. For some
more notes on crazyhouse and a description of crazyhouse as a Reinforcement Learning
Problem, see[5].

4.2 Variance

In this work we use two mathematical terms, the empirical expected value and the
empirical variance. We will provide the definition and the formula by which we calculate
them efficiently.
The empirical expected value x̄ describes the average value of the samples drawn so far
and can be used to approximate the value we would if we drew a new sample. It is defined
as

x̄ :=
1

n
·

n∑︂
i=1

xi (4.1)

9

where n is the sample size and {x1, ..., xn} are the first n samples that were drawn.
The empirical variance s2 measures how far the samples deviate from the expected value.
It is defined as

s2 :=
1

n− 1
·

n∑︂
i=1

(xi − x̄)2

with the same notation as above. The factor 1
n−1 leads to an unbiased and consistent

estimator, which ensures that with growing sample size the empirical variance converges
towards the true variance. For these definitions see any standard stochastic textbook, e.g.
Eckle-Kohler and Kohler [8].
If we were to compute the empirical expected value and variance using these formulas,
we would have to repeat many computations each time we received a new sample (e.g.
the first n additions of the sum remain the same for the expected value). Therefore,
we use running formulas that compute the new value using the old value that we have
already computed. This saves computation time and improves from O(n) to O(1). For the
empirical expected value we use the running formula

x̄n+1 =
x̄n · n+ xn+1

n+ 1
. (4.2)

One can easily verify that x̄n · n =
∑︁n

i=1 xi with x̄ as defined in 4.1 and therefore our
running formula is correct.
For the empirical variance, the running formula is not as straightforward, we do not
directly use the previous value, but by rewriting s2 to

s2 =
n ·

∑︁n
i=1 x

2
i

n − n · x̄2

n− 1
(4.3)

we can use a running formula to track the components, as introduced in [11].
Tracking the power sum average psa :=

∑︁n
i=1 x

2
i

n instead of
∑︁n

i=1 x
2
i has the numerical

advantage that it doesn’t suffer from unbounded growth like the power sum does. The
power sum average can be easily tracked with a running formula by adding x2−psa

n+1 for each
new sample x. For the other summand, we need the empirical expected value, which can
be tracked as in 4.2. We will later need the empirical expected value as a component in
the MCTS search (introduced in section 4.3), so we will be able to reuse this computation.

10

We can verify the correctness of formula 4.3 with the following calculation:

s2 =
1

n− 1
·

n∑︂
i=1

(xi − x̄)2

=
1

n

(︄
n∑︂

i=1

(︁
x2i − 2 · xi · x̄+ x̄2

)︁)︄

=
1

n− 1

(︄
n∑︂

i=1

x2i − 2x̄
n∑︂

i=1

xi +
n∑︂

i=1

x̄2

)︄
(4.1)
=

1

n− 1

(︄
n∑︂

i=1

x2i − 2x̄ · x̄ · n+ n · x̄2
)︄

=
1

n− 1

(︄
n∑︂

i=1

x2i − n · x̄2
)︄

4.3 MCTS

Monte Carlo Tree Search(MCTS) is an algorithm that aims to find the best decision among
many options in the face of uncertainty. Usually we have an infinite, or finite yet huge,
amount of options to choose from, so if we build a tree representing those options and all
their descendants, we could not search the entire tree in a reasonable span of time. So
have to use heuristics to focus on certain nodes in the tree. MCTS is a popular algorithm
for this purpose.

4.3.1 Four Steps Of MCTS

The MCTS-algorithm as shown in Figure 4.1 consists of four steps: selection, expansion,
simulation and backpropagation.
First, we use the tree policy to select the most urgent node for further evaluation. In
the expansion step, we add a node to the tree that represents the new state that will be
reached when the selected action is performed in the corresponding state. We then use
the default policy to simulate the game to the end from the newly created state and save

11

Selection Expansion Simulation

x

x

x

x

Backpropagation

x

Figure 4.1: Classic MCTS algorithm as shown e.g. in [4]

the result. This result is then backpropagated from the newly added state to its ancestors,
so that they can update their respective statistics.

4.3.2 Properties Of MCTS

When choosing a node in the selection phase, we try to balance exploration and exploitation.
Exploration means evaluating nodes that have not been evaluated (much) yet. Exploitation
means evaluating nodes that seem promising so far. If we exploit too much, we run the
risk of missing a node that didn’t show better results in the first few visits, but would
give a higher reward if evaluated further. When exploring, we evaluate nodes that seem
inferior so far, which we want to do as little as possible.
When evaluating a node, we take the state of the node and keep taking actions according
to the default policy, until we reach a terminal state. The simplest way to define a default
policy is to make random moves. However, even this policy performs well in some cases[4],
as a more promising node should give better results on average. In practice there are
many better policies which we will come back to in 4.4.3.
The terminal state we have reached is now evaluated, e.g. assigning 1 for a win, 0 for
a draw and -1 for a loss. Next, the corresponding node initialises it’s own statistics and
backpropagates the result. This evaluation method is a major advantage of MCTS in
problems where it is difficult to define good policies for evaluating intermediate states, as
in games such as chess or Go[4][21].
Another big advantage of MCTS is it’s anytime property. Because each result is immediately
backpropagated, the algorithm can always return the current best choice. In general the

12

result will improve with more playouts, and implementations based on UCB1 (Section
4.4.1) have been shown to converge to game-theoretic optimality[13].
In a given state s, the tree policy searches for the argmax of the term Q(s,a)+U(s,a), i.e.
the action that has the highest value of this term. The Q-term calculates the expected
value of the reward of choosing this action:

Q(s, a) =
1

N(s, a)

N(s)∑︂
i=1

1i(s, a) · zi

with 1i(s, a) = 1 if we select action a in time step i with state s and 0 otherwise. N(s, a)
counts how many times action a was chosen in state s. The Q-term thus represents
exploitation, since an action that seems more promising so far has a higher expected
value. The U-term should therefore represent exploration, some possible choices will be
introduced in section 4.4.

4.3.3 Multi-Armed Bandit

Multi-armed bandits are a popular use-case for MCTS and a good testing ground for new
variations of MCTS. They describe a class of problems that require a balance between
exploration and exploitation. The term bandit comes from games of chance, where a
slot-machine (or bandit) gives a reward based on an unknown distribution. If you have
several arms available, which are assumed to be independent of each other, we want to
choose the one that maximizes the reward. To do this, we need the best possible estimate
of each bandit’s expected reward. We can use various algorithms to determine which
arm to play next, some of them are described in the next section 4.4. Often we track
the regret of an action a instead of the reward. Regret describes the expected difference
between playing optimally and playing according to our policy[2]. The regret after n
plays is defined as

R(a) = µ∗n−
K∑︂
j=1

µjE[Tj(n)]

where µ∗ is the maximum expected value of the K arms, i.e. the reward we would receive
if we always played the optimal arm. E[Tj(n)] is the expected number of times arm j will
be chosen in the first n rounds. It can be shown that, for many distributions, the optimal
achievable regret suffers from logarithmic growth (O(lnn))[14].

13

4.4 Exploration

In the selection phase of MCTS, we search for the argmax of the term Q(s, a) + U(s, a)
where the Q-term is the empirical expected value. The U-term should manage the amount
of exploration, in the following we will look at different approaches to defining U.

4.4.1 Upper Confidence Bounds

In Upper Confidence Bounds (UCB1)[2], we want to use the Upper Confidence Bounds
that a particular arm of a multi-armed bandit is optimal. We set

U(s, a) =

√︄
2 lnn
nj

where n is the total number of plays so far and nj is the number of times that arm j
has been selected. This term comes from the size of the one-sided confidence interval
of the empirical expected value, since most likely the true expected reward lies in that
interval. More precisely, the probability that the distance between true reward and the
empirical expected value is greater than U(s,a) at time t is smaller than 2t−4 under the
assumption of independent, identically distributed samples. UCB1 has logarithmic regret
for any reward distribution with support [0,1] and can therefore be considered optimal.
It even achieves this regret uniformly over n and not just asymptotically [2].

4.4.2 Upper Confidence Bound For Trees

Upper Confidence Bound for Trees (UCT)[12] is an algorithm that applies UCB1 to general
tree search. We want to choose the best action at the root of the tree, so we use UCB1 to
select the most promising child node at each node in the tree. In addition we introduce a
factor Cp:

U(s, a) = Cp ·

√︄
2 lnn
nj

This factor Cp can be chosen to be 1 as in UCB1, but Kocsis et al.[12] generalised the
result and showed that any Cp can be chosen if it satisfies Cp ·

√︂
2 lnn
n ≥ 2|δin| where δin is

the difference between the current empirical expected value and the true expected value.

14

4.4.3 Predictor Plus Upper Confidence Bounds

PUCB(Predictor plus UCB)[16] uses contextual side information to improve UCB1. This
contextual side information is a prior probability that the arm is good, which can be
given e.g. by domain-specific knowledge or a neural network. This prior is assumed to be
imperfect, so search is still needed.
PUCB works well if the prior is good. Unlike UCB1, here we do not necessarily start by
playing every arm once, because we don’t rely on experimental information to estimate
how good an arm is.
In PUCB our U-term is:

U(s, a) = c(n, si)−m(n, i)

where c(n, s) =
√︂

3·lnn
2ni

andm(n, i) = 2
Mi

·
√︂

lnn
n generally andm(1, i) = 2

Mi
and c(n, 0) =

0 as initialization. The factor 3
2 here differs from the 2 in UCB1. Mi is the prior of action i,

with the weights summing to 1,
∑︁

iMi = 1.

4.4.4 Polynomial Upper Confidence Bound for Trees

Polynomial Upper Confidence Bound for Trees(PUCT)[16][20] is a refinement of PUCB
which also uses contextual side information. It’s U-term is:

U(s, a) = cpuct · P (s, a)

∑︁
b nb

1 + na
(4.4)

where P(s,a) is the prior probability, cpuct is a constant that determines the level of
exploration and

∑︁
b nb and na are the total number of visits and the number of visits of

action a in state s, respectively.
David Silver et al. revolutionised engine play of board games such as Go, chess and Shogi
with AlphaGo[19], AlphaGoZero[20] and AlphaZero[18]. They proved that these games
can be learned to superhuman levels without incorporating human knowledge by using a
general-purpose reinforcement learning algorithm. They used PUCT with the choice

cpuct(s) = log
∑︁

aN(s, a) + cpuct−base + 1

cpuct−base
+ cpuctinit.

CrazyAra also uses PUCT with cpuct−base = 19652 and cpuct−init = 2.5[6].

15

4.4.5 MCTS And Multi-Threading

One of the most popular approaches to improving the performance of algorithms is multi-
threading. MCTS is no exception, in principle we can run the search in parallel as long
as the backpropagation is atomic. However, if we simply use multiple threads to run the
MCTS algorithm, we run into a problem: all these threads would choose the same node,
since the formula is deterministic. So we introduce virtual loss.
When a thread has chosen a node to expand, we pretend to have lost a certain amount
(default 1) of games from that position so that it appears less attractive to the other
threads. By temporarily adding a number of games with a result of -1, the other nodes
are likely to choose another node, since the Q-term has drastically decreased. When the
batch has finished and we backpropagate the results, we revert the virtual loss so that at
the start of the next batch we have the correct tree again.

4.5 Uncertainty

Applying uncertainty to improve the accuracy of predictions has a long tradition that
goes beyond machine learning. The ”wisdom of crowds” describes the phenomenon that
aggregating the predictions of a large number of people, who don’t have to be an expert,
can lead to surprisingly accurate predictions[9]. To take this a step further, Ugander et
al.[23] added uncertainty to improve the accuracy. They asked people to make multiple
guesses and score them according to the accuracy of their best guess. This motivates
people to make guesses that are close to each other when they are quite certain and
spreading out the guesses when they are uncertain. They showed that this approach
significantly improved the performance of the crowd. In this work, however, we use a
different interpretation of uncertainty.
We use the term uncertainty to describe the confidence that our current value estimation
of a position is correct. To achieve this, we train our network to compute an additional
output that estimates the difference between our current value estimation and a weighted
sum of values over the next moves in the training data.

16

5 Related Work

In this chapter we will discuss some papers on the use of variance and uncertainty in
MCTS, ideas introduced by KataGo and give a brief introduction to CrazyAra.

5.1 Papers

Bauer, Patten and Vincze have successfully combined the empirical variance with the
Q-term of the MCTS-formula to improve state-of-the-art object pose estimation in the field
of robotic vision systems[3]. They followed Auer et al.[2] and their adaption of UCB1
into the UCB1-tuned-formula and made the equivalent changes to the formula for Upper
Confidence bound for rooted Directed acyclic graphs (UCD)

πUCD(c, d1, d2, d3) = µ̂d1 + c ·

√︄
ln(pd2)
nd3

to arrive at what they call UCD-tuned

πUCD−tuned(c, d1, d2, d3) = µ̂d1 + c ·

⌜⃓⃓⎷ ln(pd2)
nd3

·min

(︄
1

4
, σ̂2

d1 +

√︄
2 ln(pd2)

nd3

)︄
. (5.1)

Here the index d1 of the variance σ̂2 indicates that we compute the variance up to depth d1.
They went on to show that this (although combined with other improvements) resulted
in a performance improvement over state-of-the-art methods. In section 8.2.1 we will
replicate their results.
Audibert et al.[1] show that variance-based approaches work well when “the variance of
some sub-optimal arm is much lower than b2” where b is the upper bound of the reward,
i.e. 1 in our case. It is not clear whether our domain fulfils this criterion or not, since

17

much lower is a vague statement.
Guo et al.[10] showed that the softmax prediction of an NN may not match its true
confidence, which is the reason why considering the uncertainty is an interesting task in
the first place, and thus a foundation of this paper.
Lan et al.[15] evaluated 3 possible ways of predicting the uncertainty. One method is based
on the policy of the original network, the other two methods train an auxiliary network.
They define a tree status as uncertain if ∃n′ ≥ n, s.t.RNmax(s,Nmax)− RNmax(s, n

′) ≥ ϵ
where ϵ is a small constant, Nmax is the maximum number of solutions until we assume to
have arrived at the ground truth, and RNmax the approximate reward of our policy after n
simulations. In other words, a status is uncertain if our reward differs from the ground
truth by more than a tolerable amount at a later time. Their approaches have been shown
to perform at the same level as their base engine while being significantly faster.

5.2 KataGo

Inspired by DeepMind’s AlphaZero work, David Wu created the strongest open-source
Go engine1. To achieve this, they introduced “several new techniques to improve the
efficiency of self-play learning” [25]. They also added some domain-specific improvements
to achieve results comparable to those of DeepMind and the open-source implementation
of AlphaZero, ELF[22], using significantly less computing power. They have documented
more recent experimental techniques that proved to be beneficial in a publicly available
document 2. Among other interesting techniques, they described ways to utilize variance
and uncertainty in MCTS, which was the inspiration for this thesis.

1In the most recent computer Go world championship KataGo placed first in the group stage
and second in the final.http://entcog.c.ooco.jp/entcog/new_uec/en/result.html.
The winner used a modified version of KataGo https://drive.google.com/file/d/
1EM1Cy1Zq4EfAqGR1yyu2mLDS3ZO5dao8/view. Also the computing power was not standardised,
computer Go tournaments are not very professional yet. Links accessed April 4, 2023

2https://github.com/lightvector/KataGo/blob/master/docs/KataGoMethods.md,
accessed April 4, 2023

18

http://entcog.c.ooco.jp/entcog/new_uec/en/result.html
https://drive.google.com/file/d/1EM1Cy1Zq4EfAqGR1yyu2mLDS3ZO5dao8/view
https://drive.google.com/file/d/1EM1Cy1Zq4EfAqGR1yyu2mLDS3ZO5dao8/view
https://github.com/lightvector/KataGo/blob/master/docs/KataGoMethods.md

5.3 CrazyAra

CrazyAra is an open-source MCTS engine that is capable of playing several chess-variants
and excels at crazyhouse, beating the human 2017 crazyhouse world champion [7]. It
was originally developed by Johannes Czech, Moritz Willig and Alena Beyer, and was later
continued by Johannes Czech. It consists of a Convolutional Neural Network (CNN) which
was been trained in supervised manner on a set of human games played on the open-
source chess server lichess. Later the network was trained in a reinforcement learning
setting[5].

19

6 Utilizing Variance

In this chapter we will describe our approach to utilize the variance in MCTS.

6.1 Running Formula

There are several running formulas for computing the variance[17]. One can use a naïve
approach (as in 4.3), use the fact that the variance is invariant under addition to shift the
data, or use more sophisticated algorithms such as Welford’s online algorithm[24]. In our
evaluation we will mainly use Welford’s formula, which we will introduce now. We track
the mean value as in 4.2. One way to track the variance would be to track it directly via

σ2
n = σ2

n−1 +
(xn − x̄n−1) · (xn − x̄n)− σ2

n−1

n
. (6.1)

However, there are two sources of numerical instability, when subtracting the previous
mean from our new sample, since these two numbers are likely to be very close to each
other, potentially leading to catastrophic cancellation. Also we repeatedly subtract a small
number from a large number that scales with n, again leading to loss of precision.
To avoid the latter problem, Welford introduced an algorithm that also tracks the sum of
squares of differences from the current mean, Mn, where

Mn = Mn−1 + (xn − x̄n−1) · (xn − x̄n)

σ2
n =

Mn

n

They proved the correctness of this formula in [24].

20

6.2 Parameter Tuning

To utilize the variance in MCTS, Wu et al.[25] multiplied the standard deviation with the
U-term. However, this is not the only option, one could use addition instead of multiplica-
tion, one could use the variance instead of the standard deviation, and the choice of the
initial value in a concrete implementation is also an interesting question.

6.2.1 Addition Vs. Multiplication

PUCT is already a well-established and widely used algorithm with a careful balance
between the U-term and the Q-term, neither of which should dominate the other too much.
The variance is a value between 0 and 1, usually closer to 0. So introducing the variance
as a factor should generally shift the balance towards the Q-term. One can imagine a
scenario where one node has a much higher Q-value than all others, but the U-value of
these other nodes is higher. By introducing this new factor we reduce the U-value and
therfore the node with high Q-value would be selected more often, resulting in an increase
in exploitation.
An alternative would be to leave the U-term as it is and add a new term, the variance.
This would maintain the balance between U-term and Q-term, while shifting the attention
to nodes with a higher variance. Parameter tuning is required so that the variance-term
makes a difference, but does not dominate the other terms. In this scenario we would be
searching for the argmax of Q(s, a) + U(s, a) + var(s, a) with U(s, a) as in 4.4.

6.2.2 Initial Value

Whichever operation we use, the initial value of the variance makes a difference. If we
choose to initialize the variance with 0, the variance’s term will not matter until the node
has been visited twice. If we use multiplication, this even cancels out the entire U-term,
leaving the entire early search to the Q-term alone.
With this in mind, we have considered initializing the variance with a value that it is likely
to take when first computed (after two visits). Manual analysis of the variance in different
board position suggested a value of around 0.05 as a common initial value. The largest
observed values were around 0.35, so we also experimented with 0.2 as the mean between
these two values and 0.1 as an intermediate step.

21

6.2.3 Standard Deviation Vs. Variance

KataGo’s motivating example1 does not work when using the variance, only when using
the standard deviation. However, our observations implied that the variance also performs
well in various configurations, so we included it in our evaluation.

6.2.4 Parameters

In each of the constellations of options described above, additional constant parameters
can be introduced. We experimented with multiplying parameters between 0.25 and
2, observing that parameters greater than 1 and smaller than 0.5 did not perform well.
Therefore, we used 0.5 and 1 in our final evaluation.

1https://github.com/lightvector/KataGo/blob/master/docs/KataGoMethods.md#
dynamic-variance-scaled-cpuct, accessed April 4, 2023

22

https://github.com/lightvector/KataGo/blob/master/docs/KataGoMethods.md#dynamic-variance-scaled-cpuct
https://github.com/lightvector/KataGo/blob/master/docs/KataGoMethods.md#dynamic-variance-scaled-cpuct

7 Utilizing Uncertainty

We want to use supervised learning to train a new neural network from scratch and then
compare the performance of this new network when using uncertainty and when turning
it off via an UCI1-option.

7.1 Theory

Originally CrazyAra has two output heads, a value output and a policy output. We add a
new head, the uncertainty output, which should predict the squared difference between
the neural net’s value prediction (at time t) and (1 − λ)

∑︁
t′>=tMCTS-score(t′) · λt′−t

where we chose λ = 5
6 as in KataGo2. Here t′ is every move that comes in the game from

the training data set after the current position. The weighted sum’s factor λt′−t decreases
for bigger t′. Since the training data is not perfect, this makes sense the longer the game
goes on, the further it will drift away from optimal play.

7.2 Methodology

For the training data, we gathered every ranked crazyhouse match that was played on a
server3 between January 2016 and March 2018, where both players were in the top 10%
of players, corresponding to an Elo rating of 2000. Matches played between April 2018
and August 2018 were used for validation and testing.
We then used CrazyAra to annotate the data with two values, the raw net’s evaluation of
1https://wbec-ridderkerk.nl/html/UCIProtocol.html, accessed April 4, 2023
2https://github.com/lightvector/KataGo/blob/master/docs/KataGoMethods.md#
uncertainty-weighted-mcts-playouts, accessed April 4, 2023

3https://lichess.org, accessed April 4, 2023

23

https://wbec-ridderkerk.nl/html/UCIProtocol.html
https://github.com/lightvector/KataGo/blob/master/docs/KataGoMethods.md#uncertainty-weighted-mcts-playouts
https://github.com/lightvector/KataGo/blob/master/docs/KataGoMethods.md#uncertainty-weighted-mcts-playouts
https://lichess.org

the position, i.e. without performing any search and the engine evaluation of the position
after 400 nodes. The latter data point is used as ground-truth, i.e. it is assumed to be the
correct evaluation of the position and thus our training target. This assumption obviously
doesn’t hold, but it is a good approximation.

24

8 Evaluation

8.1 Methodology

In this section, we will describe the methodology we used to fairly compare our modified
version of CrazyAra with the baseline.

8.1.1 Cutechess

CuteChess1 is a set of tools for working with chess engines. We were mainly interested
in the command line interface (CLI). It can be used to play single matches or entire
tournaments with different participants, such as humans or engines. The CLI allows
setting options for all engines or only for specific engines. We used it, for example, to
limit the amount of nodes and simulations that can be used, to use MCTS search instead
of Monte-Carlo Graph Search (MCGS) and whether or not to use variance. Then we used
it to terminate games early when the outcome is sufficiently clear, i.e. an engine is forced
to resign when both engines give the other side an advantage of at least 600 centipawns
for 5 consecutive moves. A draw was declared when both engines’ evaluation was below
20 centipawns for 4 consecutive moves after move 30. The CLI also allowed us to use an
opening book. The main reason for using an opening book is to increase the variety of the
matches and to get a more accurate estimate of the general strength of the engine. For
crazyhouse we used a book2 that was designed specifically for this purpose. In crazyhouse,
another purpose was to increase the amount of draws by choosing openings that are more
balanced than the usual opening position.
For chess we used another opening book3, by Stefan Pohl, which was designed to reduce
1https://github.com/cutechess/cutechess, accessed April 4, 2023
2https://github.com/ianfab/books/blob/master/crazyhouse_mix_cp_130.epd, ac-
cessed April 4, 2023

3https://www.sp-cc.de/uho_2022.htm, accessed April 4, 2023

25

https://github.com/cutechess/cutechess
https://github.com/ianfab/books/blob/master/crazyhouse_mix_cp_130.epd
https://www.sp-cc.de/uho_2022.htm

the amount of draws, since top-level chess tends to have a drawish nature.
We decided to limit the amount of nodes and simulations, rather than giving a time-limit,
because we wanted to determine if our approach was successful in shifting the engine’s
attention to more promising nodes in situations of high variance. To do this, we want an
equal amount of nodes to be evaluated, the loss in performance is a secondary concern
for the moment.

8.2 Results

8.2.1 Multi-Armed Bandit

As a first step, we verified claims from the literature [3] that UCD-tuned (see 5.1) performs
better than UCB1 on a bandit problem.
Our experimental setup was to create 50 bandits B, which are randomly initialised, to give
normal-distributed reward with Bi N(100 + r, v), where r is a random number between
-1 and 1, with a step-size of 0.02 and v is a random number between 0.05 and 0.25, with
a step-size of 0.005. The idea was to mimic the amount and range of possible moves in
crazyhouse. We simulated 10.000 nodes, i.e. 10.000 decisions by each algorithm, summed
the reward and compared the two results. This was repeated 100 times to minimize
chance. The Python code is documented in a Github-repository4.
In this experiment, UCD-tuned outperformed UCB1 by a mean margin of 333.55 with
a standard deviation of 7.88, the maximum difference was 354.17 and the minimum
difference was 307.49. So we can verify the result from [3] and try to port the result to
crazyhouse.

8.3 Evaluation Of Variance

In this section we present the results of the evaluation of our modified ClassicAra/CrazyAra
engine.

4https://github.com/MartinRuz/BA_Multi-armed-bandit, accessed April 4, 2023

26

https://github.com/MartinRuz/BA_Multi-armed-bandit

8.3.1 First Tests: Classical Chess With 200 Nodes

First, we will show our evaluation of classical chess, where each engine is assigned a
maximum of 200 nodes. We ran two round-robin tournaments, one with six participants
and one with seven participants. The first 100 positions of the previously mentioned
opening books (8.1.1) were used. Each engine played each other engine twice in every
position, once with black and once with white. So in total 42 and 30 matches were played
respectively from each position, resulting in a total of 4200 and 3000 matches in the
tournament.
In both tournaments we included the baseline engine, an unmodified ClassicAra5. For
comparison, we chose a few different constellations of parameters that we tuned.
The first distinction is between engines with ’welford’ in their name and engines with
’old’ in their name. ’Welford’ denotes engines that compute the variance using Welford’s
formula 6.1 and ’old’ indicates engines that use the basic running formula 4.3.
The next distinction is between ’var’ and ’stddev’ where we indicate whether the engine
uses the variance or the standard deviation.
’Add’ or ’mult’ together with a number indicates whether the variance (or standard devia-
tion) was added or multiplied to the U-term, with the number being a further multiplicative
factor.
Finally, ’init_x’ indicates different initialisations of the variance, using var=x when adding
a new node.

In Figure 8.1 we see two engines that performed almost as strong as the reference engine
and three engines that performed slightly worse, but still within the margin of error. In
this test we didn’t include the configuration ’old’, adding 0.5 times the variance, so we
ran an individual test between the ’old’ and the ’welford’ configurations The ’welford’
configuration won 527-507-194 (W-L-D), corresponding to an Elo difference of +5.7 +/-
17.8. In further tests we will compute the variance using Welford’s formula and drop the
distinction from the names for brevity.
In Figure 8.2 we tested another set of engine configurations, three of which had a different
initial value. They all performed similarly; all of them were significantly worse then the
base ClassicAra. ClassicAra_add_05stddev was included again because in a preliminary
test it seemed like the most promising engine, unfortunately it performed even worse
than in the first test. The other two engines didn’t show a notable performance either.

5https://github.com/MartinRuz/CrazyAra/commit/c40585ae2553ac042944826fde5ff7a9b7adac18,
accessed April 4, 2023

27

https://github.com/MartinRuz/CrazyAra/commit/c40585ae2553ac042944826fde5ff7a9b7adac18

Cl
as

si
cA

ra
Cl

as
si

cA
ra

_a
dd

_0
5w

el
fo

rd
_v

ar
Cl

as
si

cA
ra

_a
dd

_0
5s

td
de

v_
ol

d
Cl

as
si

cA
ra

_a
dd

_v
ar

_o
ld

Cl
as

si
cA

ra
_a

dd
_0

5_
w

el
fo

rd
_s

td
de

v
Cl

as
si

cA
ra

_a
dd

_w
el

fo
rd

_v
ar

−20

0

20

R
el

at
iv

e
E

lo

Figure 8.1: Tournament result from Clas-
sical Chess with 200 nodes.

Cl
as

si
cA

ra
Cl

as
si

cA
ra

_a
dd

_0
5s

td
de

v
Cl

as
si

cA
ra

_a
dd

_v
ar

Cl
as

si
cA

ra
_a

dd
_v

ar
_i

ni
t0

2
Cl

as
si

cA
ra

_a
dd

_v
ar

_i
ni

t0
05

Cl
as

si
cA

ra
_a

dd
_v

ar
_i

ni
t0

1
Cl

as
si

cA
ra

_a
dd

_s
td

de
v

−40

−20

0

20

40

60

R
el

at
iv

e
E

lo

Figure 8.2: Tournament result from
Classical Chess with 200
nodes, another batch of
engines.

8.3.2 Further Tests In Chess And Crazyhouse

Next, we did evaluations in classical chess, where the engines could use more nodes and
tests in crazyhouse with the same number of nodes. In all these tests we used the following
6 engines:

• ClassicAra6(the baseline),

• ClassicAra_add_05_var7(one of the two most promising engines from 8.1),

• ClassicAra_add_05stddev8(the other promising engines from 8.1),

• ClassicAra_add_var_init0059(one engine with an initial value that is not 0, since

6https://github.com/MartinRuz/CrazyAra/commit/c40585ae2553ac042944826fde5ff7a9b7adac18,
accessed April 4, 2023

7https://github.com/QueensGambit/CrazyAra/commit/a01f62182217b2994eb64b50019d8fcc835526dd,
accessed April 4, 2023

8https://github.com/QueensGambit/CrazyAra/commit/c2fcb96f7c16fd847a0a704893a206e09649d3c9,
accessed April 4, 2023

9https://github.com/QueensGambit/CrazyAra/commit/7932786e0770738b3cfad23c4dea94a1ce4d2291,
accessed April 4, 2023

28

https://github.com/MartinRuz/CrazyAra/commit/c40585ae2553ac042944826fde5ff7a9b7adac18
https://github.com/QueensGambit/CrazyAra/commit/a01f62182217b2994eb64b50019d8fcc835526dd
https://github.com/QueensGambit/CrazyAra/commit/c2fcb96f7c16fd847a0a704893a206e09649d3c9
https://github.com/QueensGambit/CrazyAra/commit/7932786e0770738b3cfad23c4dea94a1ce4d2291

they all performed similarly we chose this one as the conceptually most sensible
from 6.2.2),

• ClassicAra_add_var10(another rather promising engine from 8.1 and used as the
’baseline’ of additive engines),

• ClassicAra_welford_mult_stddev11(the KataGo configuration).

Of course, in the crazyhouse tests we used the corresponding CrazyAra version instead of
ClassicAra. Notably we did not include ClassicAra_welford_mult_stddev in the graphs,
as it achieved Elo-Ratings in the range from -217 down to -1079. It is included mainly
because this is the configuration that KataGo has used successfully 12.

Cl
as

si
cA

ra

Cl
as

si
cA

ra
_a

dd
_0

5_
va

r
Cl

as
si

cA
ra

_a
dd

_0
5s

td
de

v
Cl

as
si

cA
ra

_a
dd

_v
ar

_i
ni

t0
05

Cl
as

si
cA

ra
_a

dd
_v

ar

0

20

40

60

80

R
el

at
iv

e
E

lo

Figure 8.3: Tournament results from
chess with 400 nodes (5/6
engines shown).

Cl
as

si
cA

ra

Cl
as

si
cA

ra
_a

dd
_0

5_
va

r
Cl

as
si

cA
ra

_a
dd

_0
5s

td
de

v
Cl

as
si

cA
ra

_a
dd

_v
ar

_i
ni

t0
05

Cl
as

si
cA

ra
_a

dd
_v

ar

20

40

60

80

100

R
el

at
iv

e
E

lo

Figure 8.4: Tournament results from
chess with 800 nodes (5/6
engines shown).

In every test we ran, the base engine scored the highest. The most promising modified
configuration seems to be ClassicAra_add_05_var, coming second in 5 out of 6 tests. In the

10https://github.com/QueensGambit/CrazyAra/commit/eedd94e97741fd413ffe9805f13c762d811c171a,
accessed April 4, 2023

11https://github.com/QueensGambit/CrazyAra/commit/7809a2a4b1d1b27bcf818d6cf869c177238abfd5,
accessed April 4, 2023

12https://github.com/lightvector/KataGo/blob/master/docs/KataGoMethods.md#
dynamic-variance-scaled-cpuct, accessed April 4, 2023

29

https://github.com/QueensGambit/CrazyAra/commit/eedd94e97741fd413ffe9805f13c762d811c171a
https://github.com/QueensGambit/CrazyAra/commit/7809a2a4b1d1b27bcf818d6cf869c177238abfd5
https://github.com/lightvector/KataGo/blob/master/docs/KataGoMethods.md#dynamic-variance-scaled-cpuct
https://github.com/lightvector/KataGo/blob/master/docs/KataGoMethods.md#dynamic-variance-scaled-cpuct

Cr
az

yA
ra

Cr
az

yA
ra

_a
dd

_v
ar

Cr
az

yA
ra

_a
dd

_0
5v

ar
Cr

az
yA

ra
_a

dd
_0

5s
td

de
v

Cr
az

yA
ra

_a
dd

_v
ar

_i
ni

t0
05

20

40

60

80

100

R
el

at
iv

e
E

lo

Figure 8.5: Tournament results from
crazyhouse with 200 nodes
(5/6 engines shown).

Cr
az

yA
ra

Cr
az

yA
ra

_a
dd

_0
5v

ar

Cr
az

yA
ra

_a
dd

_v
ar

Cr
az

yA
ra

_a
dd

_0
5s

td
de

v
Cr

az
yA

ra
_a

dd
_v

ar
_i

ni
t0

05

40

60

80

100

120

R
el

at
iv

e
E

lo
Figure 8.6: Tournament results from

crazyhouse with 400 nodes
(5/6 engines shown).

Cr
az

yA
ra

Cr
az

yA
ra

_a
dd

_0
5v

ar
Cr

az
yA

ra
_a

dd
_0

5s
td

de
v

Cr
az

yA
ra

_a
dd

_v
ar

Cr
az

yA
ra

_a
dd

_v
ar

_i
ni

t0
05

0

50

100

150

R
el

at
iv

e
E

lo

Figure 8.7: Tournament results from
crazyhouse with 800 nodes
(5/6 engines shown).

30

test where it came third (8.5), it’s rating standard error was well within the standard error
of the runner-up, and it had an intersection with CrazyAra’s standard error. This overlap
was achieved in all but one test (8.7) where it was one point short. We performed another
test with ClassicAra and ClassicAra_add_05_var to see their head-to-head performance.
For this the complete opening book was used, a total of 614 positions in chess and 691
positions in crazyhouse. Again, each position was played twice, so that both engines had
one game with the black pieces and one game with the white pieces. Unfortunately, our
modified engine still did not perform well, with the trend showing that increasing the
number of nodes seems to increase the gap.

200 400 600 800 1000
Neural Network Evaluations per Move

−100

−50

0

50

100

R
el

at
iv

e
E

lo

ClassicAra
ClassicAra_welford_add_05_var

Figure 8.8: Elo evaluation from the
match ClassicAra vs Clas-
sicAra_welford_add_05_var
with 200, 400, 800 nodes.

200 400 600 800 1000
Neural Network Evaluations per Move

−100

−50

0

50

100

R
el

at
iv

e
E

lo

CrazyAra
CrazyAra_welford_add_05var

Figure 8.9: Elo evaluation from the
match CrazyAra vs Craz-
yAra_welford_add_05_var
with 200, 400, 800 nodes.

8.4 Uncertainty

Due to lack of time, we were not able to train a network with the additional uncertainty
head. We did annotate the data and will give some statistics here. From our selection
of training data (7.2) we got 550 files of at least 1000 games each. The dataset was
kindly provided by Johannes Czech. During our analysis we encountered the problem that
CrazyAra sometimes crashed (about once every 5000 games). If a file caused such a crash
twice, we decided not to use it, leaving us with a total of 515 files. Three of those were
assigned to be used for validation, testing and mate_in_one testing. The datasets were

31

compressed in the Zarr13 and z514 libraries, using the lz415 compression format[5]. Zarr
has the advantage of being compatible with Python and C++, where Python is used for
the data analysis (and historical implementations of CrazyAra), and C++ for the modern
implementation of CrazyAra.
We appended two new arrays to each dataset, one consisting of the most recent net’s16
evaluation and the other one being the value evaluation after 400 nodes.
Since we did not train the neural network, we performed some statistical analysis on the
data. We were interested in the difference between the network’s evaluation and the
evaluation after the search, so we took the absolute value of this difference. It showed a
mean difference of 0.53 with a standard deviation of 0.34. This suggests that this approach
might be promising, as there is not only a large difference between the two values, but
it is also quite widely distributed, implying that there are many positions where the net
suggests another move than the full search.

13https://github.com/zarr-developers/zarr-python, accessed April 4, 2023
14https://zenodo.org/record/3585752, accessed April 4, 2023
15https://github.com/lz4/lz4, accessed April 4, 2023
16https://github.com/QueensGambit/CrazyAra/releases/download/0.9.5/

CrazyAra-rl-model-os-96.zip, accessed April 4, 2023

32

https://github.com/zarr-developers/zarr-python
https://zenodo.org/record/3585752
https://github.com/lz4/lz4
https://github.com/QueensGambit/CrazyAra/releases/download/0.9.5/CrazyAra-rl-model-os-96.zip
https://github.com/QueensGambit/CrazyAra/releases/download/0.9.5/CrazyAra-rl-model-os-96.zip

9 Discussion

9.1 Problems During The Evaluation

A recurring problem during our evaluation was that engines would crash, terminating
the game and awarding victory to the opponent. Manual analysis of this issue suggested
that this usually happened in positions that were hopelessly lost anyway, with the last
evaluation before the crash usually being ’Mate in x moves’. Our first theory was that
this pointed to an issue with CrazyAra’s Early_Stopping option, which stops the search
when only one move is available, since this move has to be played anyway. However,
disabling this option did not solve the problem. We even found a position where black is
in a good position (depicted in 9.1), but the black engine disconnected. The pattern that
the disconnecting engine has only a single move continues, but in this case it is not a bad
position. White’s attack has failed and they have lost their Queen. Evaluating this position
using ClassicAra with 100.000 nodes gives a score of -529cp, i.e. black leads by more
than 5 pawns. The overwhelming majority of disconnects still happen in lost positions,
but evidently there are exceptions. Therefore we also evaluated the matches of ClassicAra
vs ClassicAra_welford_add_05_var without counting abandoned games. In most cases the
result remained unchanged, but chess with 200 nodes was notably an exception again.
In the match that was documented here (8.8) the score was 504-483-241 (W-L-D) in
CrazyAra’s favour. Without disconnections (and counting draws as half a point for both
players), the result would have been 503.5-517.5, i.e. our modified version would have
won. However, as described above, this is probably unfair to CrazyAra, as in most cases
the disconnecting engine would have lost and so the score should remain unchanged.

33

Figure 9.1: Example position where
Black disconnected even
though Black is winning. The
arrow marks the last move.

Figure 9.2: Position after Black per-
forms the only possible
move Kxc7, with an evalua-
tion of -529cp.

9.2 Discussion Of The Results

In our final systematic tests, our modified engines failed to improve the base engine even
once. The difference was usually not big, but it was there in every match. In an earlier
test, we once had a match with a result of +18.7 +/- 17.7 for our modified engine, when
adding 0.5 times the standard deviation in chess, with 200 nodes. However, in our final
tests this intermediate result was not confirmed, and even if it had been, it would have
been a single victory among many defeats. In the round-robin tournaments, the base
engine scored an Elo advantage ranging from 1 to 46, coming first every time. In the
head-to-head encounter against ClassicAra_add_05_var it also won all 6 matches with
the Elo advantage ranging from +5.9 +/-17.4 (in chess with 200 nodes) up to +35.8
+/-15.9 (in chess with 800 nodes).
We must conclude that our modifications did not improve the base engine, and probably
actually made it worse.

34

9.3 Possible Reasons For The Results

We will now discuss possible reasons why we did not see the desired improvement.
While the inclusion of variance did improve KataGo and was published in June 2021,
to the author’s knowledge it has not been replicated since. Leela Chess Zero, an open-
source MCTS chess engine, also experimented with various approaches to utilize variance,
however all ideas were abandoned1. Taken together with our result this may indicate that
chess is not a suitable domain for this approach.
Audibert et al.[1] discussed MCTS algorithms with variance and stated that
“Intuitively, algorithms using variance estimates should work better than ones that do
not use such estimates (like UCB1) when the variance of some suboptimal arm is much
smaller than b2.”
In this context, b is the upper bound of the rewards, i.e. 1 in our case. So perhaps the
variance of moves in chess (and especially in crazyhouse) is too large for variance-based
approaches to work. Unfortunately no quantization of ’much smaller’ has been given, so
we cannot verify this theory.
There is also the possibility that more extensive parameter tuning is required, and we
have not yet found the best configuration.

1https://github.com/LeelaChessZero/lc0/discussions/1593, accessed April 4, 2023

35

https://github.com/LeelaChessZero/lc0/discussions/1593

10 Conclusion

10.1 Summary

In this work, we evaluated different approaches to utilize variance and uncertainty in
Monte-Carlo Tree Search. Our evaluation has shown that variance does not provide an
overall improvement in chess and crazyhouse. Initial results of our analysis of utilizing
uncertainty suggested that there might be a lot of potential, but we did not manage
to generate and test a network. In retrospect, perhaps we should have abandoned the
variance-approach earlier and focused on the uncertainty instead, but our continued
evaluation of variance-based approaches at least resulted in an engine that is only slightly
weaker than the unmodified CrazyAra/ClassicAra. This is a massive improvement over
the original KataGo1 approach, as shown in our evaluation.

10.2 Future Work

Our approach to utilize variance in MCTS did not produce the desired results. We have
identified some problems that might indicate that this approach is not suitable for chess
and crazyhouse. However, we have not exhaustively tested possible parameters, nor have
we proven that the approach must fail. A more extensive test might yield positive results.
Our first outlook on utilizing uncertainty seemed more promising; training and testing
the neural network on the data we gathered could yield interesting results.
Finally, one could question the premise of our work, that in a position with high variance
we should explore more. A more precise evaluation of the most promising node, by
exploiting it more, might also be a reasonable approach. For this one could consider

1https://github.com/lightvector/KataGo/blob/master/docs/KataGoMethods.md#
dynamic-variance-scaled-cpuct, accessed April 4, 2023

36

https://github.com/lightvector/KataGo/blob/master/docs/KataGoMethods.md#dynamic-variance-scaled-cpuct
https://github.com/lightvector/KataGo/blob/master/docs/KataGoMethods.md#dynamic-variance-scaled-cpuct

multiplying the variance by the Q-term instead of the U-term or finding a completely
different way of scaling the U-term with the variance, perhaps antiproportionally.

37

Bibliography

[1] Jean-Yves Audibert, Rémi Munos, and Csaba Szepesvári. “Exploration–exploitation
tradeoff using variance estimates in multi-armed bandits”. In: Theoretical Computer
Science 410.19 (2009), pp. 1876–1902.

[2] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. “Finite-time analysis of the
multiarmed bandit problem”. In: Machine learning 47 (2002), pp. 235–256.

[3] Dominik Bauer, Timothy Patten, and Markus Vincze. “Monte Carlo tree search on
directed acyclic graphs for object pose verification”. In: Computer Vision Systems:
12th International Conference, ICVS 2019, Thessaloniki, Greece, September 23–25,
2019, Proceedings 12. Springer. 2019, pp. 386–396.

[4] Cameron B Browne et al. “A survey of monte carlo tree search methods”. In: IEEE
Transactions on Computational Intelligence and AI in games 4.1 (2012), pp. 1–43.

[5] Johannes Czech. “Deep Reinforcement Learning for Crazyhouse”. M.Sc. TU Darm-
stadt, Dec. 2019, p. 54.

[6] Johannes Czech, Patrick Korus, and Kristian Kersting. “Improving AlphaZero Using
Monte-Carlo Graph Search”. In: Proceedings of the International Conference on
Automated Planning and Scheduling. Vol. 31. 2021, pp. 103–111.

[7] Johannes Czech et al. “Learning to play the chess variant Crazyhouse above world
champion level with deep neural networks and human data”. In: Frontiers in
Artificial Intelligence 3 (2020), p. 24.

[8] Judith Eckle-Kohler and Michael Kohler. Eine Einführung in die Statistik und ihre
Anwendungen. Springer-Verlag, 2017.

[9] Francis Galton. “Vox populi”. In: (1907).
[10] Chuan Guo et al. “On calibration of modern neural networks”. In: International

conference on machine learning. PMLR. 2017, pp. 1321–1330.

38

[11] https://subluminal.wordpress.com/author/jpmccusker/. Running Standard De-
viations. url: https://subluminal.wordpress.com/2008/07/31/
running-standard-deviations/ (visited on 04/04/2023).

[12] Levente Kocsis and Csaba Szepesvári. “Bandit based monte-carlo planning”. In:
Machine Learning: ECML 2006: 17th European Conference on Machine Learning
Berlin, Germany, September 18-22, 2006 Proceedings 17. Springer. 2006, pp. 282–
293.

[13] Levente Kocsis, Csaba Szepesvári, and Jan Willemson. “Improved monte-carlo
search”. In: Univ. Tartu, Estonia, Tech. Rep 1 (2006), pp. 1–22.

[14] Tze Leung Lai, Herbert Robbins, et al. “Asymptotically efficient adaptive allocation
rules”. In: Advances in applied mathematics 6.1 (1985), pp. 4–22.

[15] Li-Cheng Lan et al. “Learning to stop: Dynamic simulation monte-carlo tree search”.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. 1. 2021,
pp. 259–267.

[16] Christopher D Rosin. “Multi-armed bandits with episode context”. In: Annals of
Mathematics and Artificial Intelligence 61.3 (2011), pp. 203–230.

[17] Erich Schubert and Michael Gertz. “Numerically stable parallel computation of
(co-) variance”. In: Proceedings of the 30th International Conference on Scientific and
Statistical Database Management. 2018, pp. 1–12.

[18] David Silver et al. “Mastering chess and shogi by self-play with a general reinforce-
ment learning algorithm”. In: arXiv preprint arXiv:1712.01815 (2017).

[19] David Silver et al. “Mastering the game of Go with deep neural networks and tree
search”. In: nature 529.7587 (2016), pp. 484–489.

[20] David Silver et al. “Mastering the game of go without human knowledge”. In: nature
550.7676 (2017), pp. 354–359.

[21] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[22] Yuandong Tian et al. “Elf opengo: An analysis and open reimplementation of
alphazero”. In: International conference on machine learning. PMLR. 2019, pp. 6244–
6253.

[23] Johan Ugander, Ryan Drapeau, and Carlos Guestrin. “The wisdom of multiple
guesses”. In: Proceedings of the Sixteenth ACM Conference on Economics and Compu-
tation. 2015, pp. 643–660.

39

https://subluminal.wordpress.com/2008/07/31/running-standard-deviations/
https://subluminal.wordpress.com/2008/07/31/running-standard-deviations/

[24] BP Welford. “Note on a method for calculating corrected sums of squares and
products”. In: Technometrics 4.3 (1962), pp. 419–420.

[25] David JWu. “Accelerating self-play learning in go”. In: arXiv preprint arXiv:1902.10565
(2019).

40

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Outline

	Background
	Crazyhouse
	Variance
	MCTS
	Four Steps Of MCTS
	Properties Of MCTS
	Multi-Armed Bandit

	Exploration
	Upper Confidence Bounds
	Upper Confidence Bound For Trees
	Predictor Plus Upper Confidence Bounds
	Polynomial Upper Confidence Bound for Trees
	MCTS And Multi-Threading

	Uncertainty

	Related Work
	Papers
	KataGo
	CrazyAra

	Utilizing Variance
	Running Formula
	Parameter Tuning
	Addition Vs. Multiplication
	Initial Value
	Standard Deviation Vs. Variance
	Parameters

	Utilizing Uncertainty
	Theory
	Methodology

	Evaluation
	Methodology
	Cutechess

	Results
	Multi-Armed Bandit

	Evaluation Of Variance
	First Tests: Classical Chess With 200 Nodes
	Further Tests In Chess And Crazyhouse

	Uncertainty

	Discussion
	Problems During The Evaluation
	Discussion Of The Results
	Possible Reasons For The Results

	Conclusion
	Summary
	Future Work

