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Abstract

The goal of combining the robustness of neural networks
and the expressivity of symbolic methods has rekindled the
interest in Neuro-Symbolic AI. One specifically interesting
branch of research is deep probabilistic programming lan-
guages (DPPLs) which carry out probabilistic logical pro-
gramming via the probability estimations of deep neural net-
works. However, recent SOTA DPPL approaches allow only
for limited conditional probabilistic queries and do not offer
the power of true joint probability estimation. In our work,
we propose an easy integration of tractable probabilistic in-
ference within a DPPL. To this end we introduce SLASH,
a novel DPPL that consists of Neural-Probabilistic Predicates
(NPPs) and a logical program, united via answer set program-
ming. NPPs are a novel design principle allowing for the uni-
fication of all deep model types and combinations thereof to
be represented as a single probabilistic predicate. In this con-
text, we introduce a novel +/- notation for answering various
types of probabilistic queries by adjusting the atom notations
of a predicate. We evaluate SLASH on the benchmark task
of MNIST addition as well as novel tasks for DPPLs such as
missing data prediction, generative learning and set predic-
tion with state-of-the-art performance, thereby showing the
effectiveness and generality of our method.

1 Introduction
In recent years, Neuro-Symbolic AI approaches to learn-
ing (Hudson and Manning 2019; d’Avila Garcez et al. 2019;
Jiang and Ahn 2020; d’Avila Garcez and Lamb 2020) have
gained traction. In general, these integrate low-level per-
ception with high-level reasoning by combining data-driven
neural modules with logic-based symbolic modules. This
combination of sub-symbolic and symbolic systems has
been shown to have several advantages for various tasks
such as visual question answering and reasoning (Yi et al.
2018), concept learning (Mao et al. 2019) and improved
properties for explainable and revisable models (Ciravegna
et al. 2020; Stammer, Schramowski, and Kersting 2021).

Rather than designing specifically tailored neuro-
symbolic architectures, where often the neural and symbolic
modules are disjoint and trained independently (Yi et al.
2018; Mao et al. 2019; Stammer, Schramowski, and Kerst-
ing 2021), deep probabilistic programming languages (DP-
PLs) provide an exciting alternative (Bingham et al. 2019;
Tran et al. 2017; Manhaeve et al. 2018; Yang, Ishay, and

Lee 2020). Specifically, DPPLs integrate neural and sym-
bolic modules via a unifying programming framework with
probability estimates acting as the “glue” between separate
modules, thus allowing for reasoning over noisy, uncertain
data and, importantly, joint training of the modules. Ad-
ditionally, prior knowledge and biases in the form of logical
rules can easily and explicitly be added into the learning pro-
cess with DPPLs. This stands in contrast to specifically tai-
lored, implicit architectural biases of, e.g., purely subsym-
bolic deep learning approaches. Ultimately, DPPLs thereby
allow to integrate neural networks easily into downstream
logical reasoning tasks.

Recent state of the art DPPLs, such as DeepProbLog
(Manhaeve et al. 2018) and NeurASP (Yang, Ishay, and Lee
2020) allow for conditional class probability estimates as
both works base their probability estimates on neural pred-
icates. Although certain tasks may only require conditional
class probabilities, we argue that for the overall expressive
and utilization power of a DPPL, it is necessary to also be
able to integrate and process joint probability estimates. The
world is uncertain, and often it becomes necessary to reason
in settings, e.g., in which variables of an observation might
be missing or even manipulated.

In this work, we therefore make two main contributions.
First, we propose a novel form of predicates for DPPLs,
termed Neural Probabilistic Predicates (NPPs) that allow
for task-specific probability queries. NPPs consist of neu-
ral and/or probabilistic circuit (PC) modules and act as a
unifying term, encompassing the neural predicates of Deep-
ProbLog and NeurASP, as well as purely probabilistic predi-
cates. Further, we introduce a much more powerful “flavor”
of NPPs that consist jointly of neural and PC modules, tak-
ing advantage of the power of neural computations together
with true density estimation of PCs via tractable probabilis-
tic inference.

Second, having introduced NPPs, we next construct a
novel DPPL, SLASH, to efficiently combine NPPs with
logic programming. Similar to the punctuation symbol, this
can be used to efficiently combine several paradigms into
one. Specifically, SLASH represents for the first time an ef-
ficient and scalable programming language that seamlessly
integrates probabilistic logical programming with neural
representations and tractable probabilistic estimations. This
allows for the integration of all forms of probability estima-



Figure 1: NPPs consist of neural and/or probabilistic circuit modules and can produce task-specific probability estimates. In our novel
DPPL, SLASH, NPPs are integrated with a logic program via an ASP module to answer logical queries about data samples. In the depicted
instantiation of SLASH (SLASH Attention) the Neural-Probabilistic Predicates consist of a slot attention encoder and Probabilistic Circuits
(PCs) realized via EiNets. The slot encoder is shared over all NPPs, where each EiNet computes a joint distribution at the root node, thereby,
learning the joint distribution over slot encodings, zi, and object attributes, C, of a specific category, e.g., color attributes. Via targeted queries
to the NPPs, one can obtain task-related probabilities, e.g., conditional probabilities for a visual reasoning task.

tions, not just class conditionals, thus extending the works
of (Manhaeve et al. 2018) and (Yang, Ishay, and Lee 2020).

Apart from NPPs, SLASH1 additionally consists of a log-
ical program, containing a set of facts and logical state-
ments that define the state of the world of an underlying task.
Lastly, an ASP module is used to combine the NPP(s) with
the logic program. Given a logical query about the input
data, the logical program and the probability estimates ob-
tained from the NPP(s), the ASP module produces a prob-
ability estimate about the truth value of the query. Finally,
training in SLASH is performed efficiently in a batch-wise
and end-to-end fashion, by integrating the parameters of all
modules (neural and probabilistic) into a single loss term.

Fig. 1 exemplifies the building blocks of SLASH and
NPPs for a specific instantiation of SLASH, termed SLASH
Attention. This is designed for the task of set prediction
from images. In this example, the NPPs consist of a slot at-
tention encoder (Locatello et al. 2020) and several EinSum
PCs (Peharz et al. 2020). The slot encoder is shared across
all NPPs, whereas the PC of each NPP models a separate
category of attributes. This way, each NPP models the joint
distribution over slot encodings and object attribute values,
such as color of an object. By querying the NPP, one can
obtain task-related probability estimations, such as the con-
ditional attribute probability. Finally, via the logic program,
the user can predefine a set of statements and rules, e.g.,
of when an object possesses a specific set of attributes, and
query if an observed image contains a large, dark red trian-
gle.

To show the effectiveness and advantages of SLASH and
thus NPPs, we provide extensive experimental evaluations

1Code and supplements at: https://github.com/askrix/SLASH

on various data sets and tasks. Specifically, we investigate
the advantages of SLASH in comparison to SOTA DPPLs
on the benchmark task of MNIST-Addition (Manhaeve et al.
2018). We further expand on this benchmark for a miss-
ing data setup as well as generative MNIST Addition task.
Our results indicate the advantage of true probabilistic den-
sity estimation via appropriate NPPs. Finally, we show that
SLASH Attention provides superior results for set prediction
in terms of accuracy and generalization abilities compared to
a baseline slot attention encoder. Both image generation and
set prediction are novel benchmark tasks that no previous
DPPL has tackled. With our results, we show that SLASH
is a realization of “one system – two approaches” (Bengio
2019), that can successfully be used for performing various
tasks and on a variety of data types.

In summary, we make the following contributions:
• introduce neural-probabilistic predicates,
• efficiently integrate answer set programming with prob-

abilistic inference via NPPs within our novel DPPL,
SLASH.

• successfully train neural, probabilistic and logic modules
within SLASH for complex data structures end-to-end via
a simple, single loss term.

• show that the integration of NPPs in SLASH provides var-
ious advantages across a variety of tasks and data sets
compared to state-of-the-art DPPLs and neural models.

We proceed as follows. We start off by introducing NPPs,
including its contribution to the loss function when learn-
ing. Then we introduce SLASH programs with the corre-
sponding semantics and loss function. Before concluding,
we touch upon our experimental evaluation.

https://github.com/askrix/SLASH
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# Define slots and identifiers for the objects in the image
slot(s1). slot(s2). slot(s3). slot(s4).
obj(o1). obj(o2). obj(o3). obj(o4).
# Assign each slot to an object identifier (matching)
{assign_one_slot_to_one_object(X, O): slot(X)}=1 :- obj(O).
...
# Define all Neural-Probabilistic Predicates
npp(color_attr(X), [red, blue, green, grey, brown, 
                              magenta, cyan, yellow, bg]) :- slot(X).
...
# Object O has the attributes C and S and H and Z if ...
has_attributes(O, C, S, H, Z) :- slot(X), obj(O),

                                  assign_one_slot_to_one_object(X, O),
                                  color(+X, -C), shape(+X, -S),
                                  shade(+X, -H), size(+X, -Z).

# Does object o1 have the attributes red, circle, bright, small?
:- has_attributes(o1, red, circle, bright, small)

Query for set prediction:

SLASH Program for set prediction:

Figure 2: Basic SLASH building blocks and how to use them: (left) NPPs come in various flavors depending on the data and underlying
task. Depending on the data set and underlying task, SLASH requires a suitable Neural-Probabilistic Predicate (NPP) that computes query-
dependent probability estimates. A NPP can be composed of neural and probabilistic modules, or (depicted via slash symbol) only one of
these two. (right) A minimal SLASH program and query for the set prediction task, here only showing the NPP that models the color category
per object. For the full program, we refer to the supplements.

2 SLASH by Means of NPPs and Vice Versa
We begin our work by first introducing the novel framework
of probabilistic predicates, neural probabilistic predicates
(NPPs). After this, we introduce the novel DPPL, SLASH,
which easily integrates NPPs via answer set programming
with logical programming. We finally end this section with
the learning procedure in SLASH, allowing to train all mod-
ules via a joint loss term.

2.1 Neural-Probabilistic Predicates
Previous DPPLs, DeepProbLog (Manhaeve et al. 2018) and
NeurASP (Yang, Ishay, and Lee 2020), introduced the Neu-
ral Predicate as an annotated-disjunction or as a proposi-
tional atom, respectively, to acquire conditional class prob-
abilities, P (C|X), via the softmax function at the output
of an arbitrary DNN. As mentioned in the introduction,
this approach has certain limitations concerning inference
capabilities. To resolve this issue, we introduce Neural-
Probabilisitic Predicates (NPPs).

Formally, we denote with

npp (h(x), [v1, . . . , vn]) (1)

a Neural-Probabilistic Predicate h. Thereby, (i) npp is a re-
served word to label a NPP, (ii) h a symbolic name of either
a PC, NN or a joint of a PC and NN (cf. Fig. 2)(left), e.g.,
color attr is the name of a NPP of Fig. 2(right). Addition-
ally, (iii) x denotes a “term” and (iv) v1, . . . , vn are the n
possible outcomes of h. For example, the placeholders for
color attr are the color attributes of an object (Red, Blue,
Green, etc.).

A NPP abbreviates a rule of the form c = v with c ∈
{h(x)} and v ∈ {v1, . . . , vm}. Furthermore, we denote
with Πnpp a set of NPPs of the form stated in (Eq. 1) and
rnpp the set of all rules c = v of one NPP, which denotes
the possible outcomes, obtained from a NPP in Πnpp, e.g.
rcolor attr = {c = Red, c = Blue, c = Green, ...} for the
example depicted in Fig. 2(right).

Rules of the form npp (h(x), [v1, . . . , vn]) ← Body are
used as an abbreviation for application to multiple enti-
ties, e.g., multiple slots for the task of set prediction (cf.
Fig. 2(right)). Hereby, the Body of the rule is identified by⊤
(tautology, true) or ⊥ (contradiction, false) during ground-
ing. Rules of the form Head← Body with rnpp appearing in
Head are prohibited for Πnpp.

In this work, we largely make use of NPPs that contain
probabilistic circuits, which allow for tractable density esti-
mation and modelling of joint probabilities. The term prob-
abilistic circuit (PC) (Choi, Vergari, and Van den Broeck
2020) represents a unifying framework that encompasses
all computational graphs which encode probability distribu-
tions and guarantee tractable probabilistic modelling. These
include Sum-Product Networks (SPNs) (Poon and Domin-
gos 2011) which are deep mixture models represented via
a rooted directed acyclic graph with a recursively defined
structure. In this way, with PCs it is possible to answer
a much richer set of probabilistic queries, i.e. P (X,C),
P (X|C), P (C|X) and P (C).

In addition to NPPs based purely on PCs, we introduce
the arguably more interesting type of NPP that combines a
neural module with a PC. Hereby, the neural module learns
to map the raw input data into an optimal latent representa-
tion, e.g., object-based slot representations. The PC, in turn,
learns to model the joint distribution of these latent variables
and produces the final probability estimates. This type of
NPP nicely combines the representational power of neural
networks with the advantages of PCs in probability estima-
tion and query flexibility.

For making the different probabilistic queries distinguish-
able in a SLASH program, we introduce the following no-
tation. We denote a given variable with + and the query
variable with −. E.g., within the running example of
set prediction (cf. Fig. 1 and 2(right)), with the query
color attr(+X,−C) one is asking for P (C|X). Similarly,
with color attr(−X,+C) one is asking for P (X|C) and,



finally, with color attr(+X,+C) for P (X,C). And, in the
case when no data is available, i.e, color attr(−X,−C),
we are querying for the prior P (C).

To summarize, a NPP can consist of neural and/or prob-
abilistic modules and produces query-dependent probability
estimates. Due to the flexibility of its definition, the term
NPP contains the predicates of previous works (Manhaeve
et al. 2018; Yang, Ishay, and Lee 2020), but also more inter-
esting predicates discussed above. The specific “flavor” of a
NPP should be chosen depending on what type of probabil-
ity estimation is required (cf. Fig 2(left)).

Lastly, for parameter learning NPPs possess a unified loss
function of the negative log-likelihood,

LNPP := − logLH(x, x̂) =

n∑
i=1

LH(xi, x̂i) =

−
n∑

i=1

xi · log(P (X,C)
ξ (xi)) ≥ −

n∑
i=1

log(P
(X,C)
ξ (xi))

(2)

whereby LH is an abbreviation for likelihood. Further, we
assume data to be i.i.d., ground truth xi to be the all-ones
vector, ξ to be the parameters of the NPP and P

(X,C)
ξ (xi)

are the predictions x̂i obtained from the PC encoded in the
NPP.

2.2 SLASH: a Novel DPPL for Integrating NPPs
Let us now introduce SLASH, a novel DPPL that efficiently
integrates NPPs with logic programming.

SLASH Language and Semantics We continue in the
pipeline on how to use the probability estimates of NPPs for
answering logical queries, and begin by formally defining a
SLASH program.

Definition 1. A SLASH program Π is the union of Πasp,
Πnpp. Therewith, Πasp is the set of propositional rules (stan-
dard rules from ASP-Core-2 (Calimeri et al. 2020)), and
Πnpp is a set of Neural-Probabilistic Predicates of the form
stated in Eq. 1.

Similar to NeurASP, SLASH requires ASP and as such
adopts its syntax to most part. Compared to ProbLog, ASP
rarely goes into an infinite loop (c.f. chapter 2.9 of (Lif-
schitz 2019) for a simple code example leading to infinite
loops with ProbLog) and is therefore preferable as a back-
bone. Fig. 2(right) presents a minimal SLASH program for
the task of set prediction, exemplifying a set of propositional
rules and neural predicates.

We now address how to integrate NPPs into an ASP com-
patible form to obtain the success probability for the log-
ical query given all potential solutions. Thus, we define
SLASH’s semantics. For SLASH to translate the program
Π to the ASP-solver’s compatible form, the rules (Eq. 1) will
be rewritten to the set of rules:

1{h(x) = v1; . . . ;h(x) = vm}1 (3)

The ASP-solver should understand this as “Pick exactly one
rule from the set”. After the translation is done, we can ask

an ASP-solver for the solutions for Π. We denote a set of
ASP constraints in the form← Body, as queries Q and each
of the solutions regarding Q as a potential solution, I , (re-
ferred to as stable model in ASP).

With I|rnpp we denote the projection of the I onto rnpp,
Num(I|rnpp ,Π) – the number of the potential solutions of
the program Π agreeing with I|rnpp on rnpp. Because we
aim to calculate the success probability of a query Q, we
formalize the probability of potential solution I beforehand.

Definition 2. We specify the probability of the potential so-
lution, I , for the program Π as the product of the probabil-
ities of all atoms c = v in I|rnpp divided by the number of
potential solutions of Π agreeing with I|rnpp on rnpp:

PΠ(I) =

{∏
c=v∈I|rnpp

PΠ(c=v)

Num(I|rnpp ,Π) , if I is pot. sol. of Π,
0, otherwise.

(4)

Thus, we can now define the probability of a query.

Definition 3. The probability of the query Q given the set of
potential solutions I is defined as

PΠ(Q) :=
∑
I|=Q

PΠ(I). (5)

Thereby, I |= Q reads as “I satisfies Q”. The probability
of the set of queries Q = {Q1, . . . , Qn} is defined as the
product of the probability of each. I.e.

PΠ (Q) :=
∏

Qi∈Q

PΠ(Qi) =
∏

Qi∈Q

∑
I|=Q

PΠ(I). (6)

Parameter Learning in SLASH We denote with Π(θ)
the SLASH program under consideration, where θ is the set
of the parameters associated with Π. Further, making the
i.i.d. assumption of the query set Q, we follow (Manhaeve
et al. 2018) and (Skryagin et al. 2020), and use the learn-
ing from entailment setting. That is, the training examples
are logical queries that are known to be true in the SLASH
program Π(θ). The goal is to learn the parameters θ of the
program Π(θ) so that the observed queries are most likely.

To this end, we employ the negative log-likelihood and
the cross-entropy of the observed queries PΠ(θ)(Qi) and
their predicted probability value P (XQ,C)(xQi), assuming
the NPPs are fixed:

LENT :=

− logLH
(
log(PΠ(θ)(Q)), P (XQ,C)(xQ)

)
=

−
m∑
j=1

log(PΠ(θ)(Qij)) · log
(
P (XQ,C)(xQij

)
)

. (7)

This loss function aims at maximizing the estimated suc-
cess probability. We remark that the defined loss function
is true regardless of the NPP’s form (NN with Softmax, PC
or PC jointly with NN). The only difference will be the sec-
ond term, e.g., P (C|XQ)(xQ) or P (XQ|C)(xQ)) depending



on the NPP and task. Furthermore, we assume that for the
set of queries Q it holds that,

PΠ(θ)(Q) > 0 ∀ Q ∈ Q.

In accordance with the semantics, we seek to reward the
right solutions v = c and penalize the wrong ones v ̸= c.
Referring to the probabilities in rnpp (i.e., the set of logical
rules denoting NPPs; see Def. 2) as p, one can compute their
gradients w.r.t. θ via backpropagation as∑
Q∈Q

∂ log
(
PΠ(θ)(Q)

)
∂θ

=
∑
Q∈Q

∂ log
(
PΠ(θ)(Q)

)
∂p

× ∂p

∂θ
.

(8)

The term ∂p
∂θ can now be computed as usual via backward

propagation through the NPPs (see Eq.11 in the supplemen-
tary materials (Suppl.) A for details). By letting p to be the
label of the probability of an atom c = v in rnpp and de-

noting PΠ(θ)(c = v), the term
∂ log(PΠ(θ)(Q))

∂p follows from
NeurASP (Yang, Ishay, and Lee 2020) as
∂ log

(
PΠ(θ)(Q)

)
∂p

=

∑
I:I|=Q
I|=c=v

PΠ(θ)(I)

PΠ(θ)(c=v) −
∑

I:I,v′|=Q
I|=c=v′,v ̸=v′

PΠ(θ)(I)

PΠ(θ)(c=v′)

∑
I:I|=Q

PΠ(θ)(I)
. (9)

Doing this is a sensible idea. For instance, if a query to
be true is not likely to be entailed, the gradient is positive.
Putting everything together, the final loss function is

LSLASH = LNPP + LENT (10)

and we perform training using coordinate descent, i.e., we
train the NPPs, then train the program with fixed NPPs, train
the NPPs with the program fixed, and so on.

Complementary, we formulate the proposition in the fol-
lowing, showing exactly the way the parameter learning is
performed via the logical entailment loss function LENT ,
i.e., we derive its gradients.
Proposition 1. The average derivative of the logical entail-
ment loss function LENT defined in Eq. 7 can be estimated
as follows
1
n

∂
∂pLENT ≥

− 1

n

n∑
i=1

∂ log(PΠ(θ)(Qi))

∂p
· log(P (XQ,C)(xQi

))

Proof. Applying the i.i.d assumption over the likelihood and
the definition of the cross-entropy for two vectors yi and ŷi
we obtain

LENT = − logLH(y, ŷ) =

n∑
i=1

H(yi, ŷi)

= −
n∑

i=1

m∑
j=1

log(PΠ(θ)(Qij)) · log
(
P (XQ,C)(xQij

)
)

.

With m being the number of classes defined in the domain
of a NPP. Recognizing that the second term of the derivative
∂

∂p
H (yi, ŷi) =

−
m∑
j=1

[
∂ log(PΠ(θ)(Qij))

∂p
· log

(
P (XQ,C)(xQij )

)

+ log(PΠ(θ)(Qij)) ·
∂ log

(
P (XQ,C)(xQij

)
)

∂p

]
,

is a constant and assembling all intermediate steps, we ob-
tain the desired inequality.

Similarly one can derive the derivative of the NPP loss
function (Eq. 2) as:
∂
∂ξLNPP =

∂xQi

∂ξ

− n∑
i=1

1(
P

(XQ,C)
ξ (xQi

)
) ∂

∂xQi

(
P

(XQ,C)
ξ (xQi

)
)

For more details of the proof and derivations, we refer
to the Suppl. A. It also includes the details on parameter
learning for such NPPs, as depicted for SLASH Attention.

Importantly, with the learning schema described above,
rather than requiring a novel loss function for each individ-
ual task and data set, with SLASH, it is now possible to
simply incorporate specific task and data requirements into
the logic program. The training loss, however, remains the
same.

3 Empirical Evaluations
Let us now turn to experimental evaluations. In particular,
a main advantage of SLASH lies in the efficient integration
of neural, probabilistic and symbolic computations. To em-
phasize this, but also the particular advantages of integrating
true probabilistic density estimation into logic programming
via NPPs, we conduct a variety of experimental evaluations
showing the advantages and usability of SLASH on novel
tasks for DPPLs.

3.1 Experimental Details
We use two benchmark data sets, namely MNIST (Le-
Cun, Cortes, and J.C. Burges 1998) for the task of MNIST-
Addition and a variant of the ShapeWorld data set (Kuhnle
and Copestake 2017) for object-centric set prediction. For
all experiments, we present the average and the standard de-
viation over five runs with different random seeds for param-
eter initialization.

For ShapeWorld experiments, we generate a data set we
refer to as ShapeWorld4. Images of ShapeWorld4 contain
between one and four objects, with each object consisting
of four attributes: a color (red, blue, green, gray, brown,
magenta, cyan or yellow), a shade (bright, or dark), a shape
(circle, triangle, or square) and a size (small or big). Thus,
each object can be created from 84 different combinations
of attributes. Fig. 1 depicts an example image.



Test Acc. (%)
DeepProbLog 98.49± 0.18
NeurASP 98.21± 0.30
SLASH (PC) 95.52± 0.32
SLASH (DNN) 98.99± 0.04

DeepProbLog NeurASP SLASH (DNN) SLASH (PC)
50% 97.73± 0.12 25.75± 31.32 96.0± 0.02 97.59± 0.01
80% 76.07± 18.38 10.29± 0.83 95.4± 0.01 96.8± 0.00
90% 69.15± 29.15 13.28± 4.94 75.6± 0.18 95.00± 0.00
97% 32.46± 22.48 11.94± 0.95 67.4± 0.09 84.2± 0.03

Table 1: MNIST Addition and missing data MNIST Addition Results. Test accuracy corresponds to the percentage of correctly classified test
images. (left) Baseline MNIST Addition task with various DPPLs, including SLASH with a NPP that models the joint probabilities (SLASH
(PC)) and one that models only conditional probabilities (SLASH (DNN)). (right) MNIST Addition task with missing pixels. The amount of
missing pixels was varied between 50% and 97% of the pixels per image.

We measure performance via classification accuracies in
the MNIST-Addition task. In our ShapeWorld4 experiments,
we present the average precision. We refer to Suppl. B for
the SLASH programs and queries of each experiment, and
Suppl. C for a detailed description of hyperparameters and
further details. Lastly, we remark to have trained all exper-
iments but Generative MNIST-Addition by discriminative
fashion only.

3.2 Experimental Results
Let us now present our experimental findings.

Evaluation 1: SLASH outperforms SOTA DPPLs in
MNIST-Addition. The task of MNIST-Addition (Man-
haeve et al. 2018) is to predict the sum of two MNIST digits,
presented only as raw images. During test time, however, a
model should classify the images directly. Thus, although
a model does not receive explicit information about the de-
picted digits, it must learn to identify digits via indirect feed-
back on the sum prediction.

We compare the test accuracy after convergence be-
tween the three DPPLs: DeepProbLog (Manhaeve et al.
2018), NeurASP (Yang, Ishay, and Lee 2020) and SLASH,
using a probabilistic circuit (PC) or a deep neural net-
work (DNN) as NPP. Notably, the DNN used in SLASH
(DNN) is the LeNet5 model (LeCun et al. 1998) of Deep-
ProbLog and NeurASP. When using the PC as NPP, we have
also extracted conditional class probabilities P (C|X), by
marginalizing the class variables C to acquire the normaliza-
tion constant P (X) from the joint P (X,C), and calculating
P (X|C).

The results can be seen in Tab. 1(left). We observe that
training SLASH with a DNN NPP produces SOTA accura-
cies compared to DeepProbLog and NeurASP, confirming
that SLASH’s loss computation leads to improved perfor-
mances. Apart from improved mean accuracies, it is impor-
tant to note that the training of SLASH (DNN) also led to
the massively reduced standard deviation in the test accu-
racy, suggesting that SLASH allows for much more stable
results than the other DPPLs.

We further observe that the test accuracy of SLASH with
a PC NPP is slightly below the other DPPLs. However, we
argue that this may be since a PC, in comparison to a DNN,
is learning a true mixture density rather than just conditional
probabilities. The advantages of doing so will be investi-
gated in the next experiments. Note that, optimal architec-
ture search for PCs, e.g., for computer vision, is an open
research question. We also refer to the Suppl. E, indicating

substantial improvements in terms of inference time (even
with a PC-based NPP, thus performing tractable probabilis-
tic inference) due to our efficient implementation of SLASH
with the batchwise learning and parallel calls to the ASP
solver of SLASH.

These evaluations, in summary, show SLASH’s advan-
tages on the benchmark MNIST-Addition task. Additional
benefits will be made clear in the following experiments.

Evaluation 2: Handling Missing Data with SLASH.
SLASH offers the advantage of flexibility to use various
kinds of NPPs. Thus, in comparison to previous DPPLs,
one can easily integrate NPPs into SLASH that perform joint
probability estimation. For this evaluation, we again con-
sider the task of MNIST-Addition with missing data. Specif-
ically, in this evaluation, all three DPPLs were trained with
the MNIST-Addition task with images in which a percent-
age of pixels per image has been removed. Importantly,
whereas DeepProbLog, NeurASP and SLASH (DNN) han-
dle the missing data simply as background pixels, SLASH
(PC) specifically models the missing data as uncertain data
by marginalizing the denoted pixels at inference time.

As can be seen in Tab. 1(right), regardless of the NPP’s
form and the rate of the missing pixels per image, SLASH
outperforms other DPPLs, both in terms of higher mean test
accuracy and lower standard deviation. We observe that at
50%, DeepProbLog and SLASH produce almost equal ac-
curacies. With 80% percent missing pixels, there is a sub-
stantial difference in the ability of the two DPPLs to cor-
rectly classify images, with SLASH having quite stable re-
sults, and delivering only slightly decreased performance.
By further increasing the percentage of missing pixels, this
difference becomes even more substantial with SLASH (PC)
still reaching a 84% test accuracy even when 97% of the pix-
els per image are missing, whereas DeepProbLog degrades
to an average of 32% test accuracy.

We further note that SLASH, in comparison to Deep-
ProbLog, produces largely reduced standard deviations over
runs. Notably, over all seeds and settings, the test accuracy
measured by NeurASP diverged after several epochs and did
not recover. We presume this to be an effect of exploding
gradients. We also refer to Suppl. D, containing results of
training on the full MNIST data set, but testing on a set with
missing pixels, further indicating benefits of SLASH for out-
of-distribution data.

In summary, using the power of true density estimation,
SLASH can produce robust results in comparison to other
DPPLs in a task with missing data.



Figure 3: Qualitative comparison of Generative MNIST-Addition:
each row is entailing images per class. The first one are ground
truths obtained from the dataset, the second one represents the sam-
pled images from a PC trained solely in a generative way. The last
two rows are sampled from the NPP trained within SLASH. The
third row depicts images after an epoch of the discriminative learn-
ing step, and the last row after a one epoch of generative step.

Evaluation 3: True density estimation allows for genera-
tive learning. As previously mentioned, thanks to the NPP’s
design, SLASH allows us to embrace true density estimation
in logic programming. Having such a model for joint proba-
bility estimation allows for posing a much broader range of
questions, e.g., based on generative learning.

In this evaluation, we investigate the situation where only
a part of the overall dataset is available and the task is to
discover the missing part through high-level reasoning and
generative learning. This evaluation differs from evaluation
2 in that a model receives as input the result of the addi-
tion and one of the two images that contributes to the sum.
Thus, an entire image is missing, and we wish not only to
find the value of the missing digit, but also generate the cor-
responding image as well. Using the± notation, we are thus
querying for the class prior of the missing image, a type of
query that no previous DPPLs can handle.

To train SLASH for this challenging task, we require not
only discriminative, but also generative learning. For this
purpose, we applied coordinate descent with an Adam op-
timizer (Kingma and Ba 2015) to minimize the SLASH
loss (discriminative learning) and expectation maximization
(EM) to maximize the log-likelihood (generative learning).
In other words, the data set consisted of available and sam-
pled images during the generative phase of the training.

As neither of the previous DPPLs have generative capa-
bilities, we here revert to comparing the generative abilities
of SLASH with an PC-based NPP and trained via coordinate
descent to a stand-alone PC trained solely via EM. Both PCs
were constructed using the same set of settings and entail
the same number of learnable parameters. We further revert
here to a qualitative analysis of generated samples. Thus,
the point of the results is to indicate the quality of generated
samples via SLASH in comparison to the current SOTA im-
age generation results via PCs.

As with other tasks, we present the corresponding pro-
gram in the Suppl. B. Fig. 3 presents the qualitative com-
parison per class between the ground truths (data), images
sampled from a PC trained in the generative fashion and
images sampled from the NPP after training. We observe

that SLASH generated digits, though not as qualitative as
the stand-alone PC digits, still clearly depict characteris-
tic features of the classes. This is a surprising result given
that both objectives are perpendicular in their nature towards
each other, and thus it is far more challenging for the sam-
pled images to be as distinct and without artifacts as after
pure generative training of stand-alone PCs.

Thus, utilizing the generative property of NPPs with the
ability of joint probability estimation, we show that via
the ±-notation one can easily perform generative learning
out-of-the-box via SLASH. Overall, the results are a first
step of generative learning via a DPPL. We note that the
quality of the generated samples is improvable, and hy-
pothesize that employing two different optimizers for each
step of coordinate descent surely does not have an optimal
effect on the PC NPP. A promising approach for future
work is to investigate the hybrid generative-discriminative
loss proposed in RAT-SPN (eq. 5) (Peharz et al. 2019) that
unifies the training and mitigates the need for coordinate
descent.

Evaluation 4: Improved Concept Learning via SLASH.
Let us now turn to a very different setting of object-centric
set prediction, a fascinating, yet challenging task that no
DPPL has tackled up to now. Recent advances in object-
centric deep learning (OCDL) have shown great architec-
tural improvements for the performances of neural networks
in complex visual tasks, such as object set prediction from
images (Greff et al. 2019; Lin et al. 2020; Locatello et al.
2020). We propose that these advancements can be im-
proved even further by integrating such neural components
into DPPLs, and adding logical constrains about objects and
their properties. For the fourth set of evaluations, we thus
revert to the ShapeWorld4 dataset.

For set prediction, a model is trained to predict the dis-
crete attributes of a set of objects in an image (cf. Fig. 1 for
an example ShapeWorld4 image). The difficulty lies therein
that the model must match an unordered set of correspond-
ing attributes of a varying number of objects, with its inter-
nal representations of the image.

The slot attention module introduced by (Locatello et al.
2020) allows for an attractive object-centric approach to this
task. Specifically, this module represents a pluggable, differ-
entiable module that can be easily added to any architecture
and, through a competitive softmax-based attention mech-
anism, can enforce the binding of specific parts of a latent
representation into permutation-invariant, task-specific vec-
tors, called slots. In our experiments, we wish to show that
by adding logical constraints in the training setting, one can
improve the overall performances and generalization prop-
erties of such a model. For this, we train SLASH with NPPs
as depicted in Fig. 1 consisting of a shared slot encoder and
separate PCs, each modelling the mixture of latent slot vari-
ables and the attributes of one category, e.g., color. For
ShapeWorld4, we thereby have altogether four NPPs. Fi-
nally, SLASH is trained via queries of the kind exemplified
in Fig.10 in the supplements. We refer to this configuration
as SLASH Attention.

We compare SLASH Attention to a baseline slot attention



Slot Att. SLASH Att.

ShapeWorld4
Test Set 90.24± 0.93 95.58± 0.61

CoGenT
Test Cond. A 90.37± 2.19 96.85± 0.43
Test Cond. B 27.15± 2.36 40.58± 1.99

Figure 4: ShapeWorld4 Experiments. (Left) Converged test average precision scores for the set prediction task with ShapeWorld4 (top) and
ShapeWorld4 CoGenT (bottom). (Right) Test average precision scores for set prediction with ShapeWorld4 over the training epochs. In these
experiments, we compared a baseline slot encoder versus SLASH Attention with slot attention and PC-based NPPs. For the CoGenT experi-
ments, a model is trained on one training set and tested on two separate test conditions. Condition A test set contains attribute compositions
which were also seen during training. Condition B test set contains attribute compositions which were not seen during training, e.g., yellow
circles were not present in the training set, but present in Condition B test set.

encoder using an MLP and Hungarian loss for predicting the
object properties from the slot encodings as in (Locatello et
al. 2020). The key difference between these two models lies
in the logical constraint we are employing in SLASH Atten-
tion. In their original work, the authors of (Locatello et al.
2020) utilize a single MLP trained via Hungarian loss, i.e.,
they assume shared parameters for all attributes. In com-
parison, in SLASH attention, we make an independence as-
sumption about the parameters for the object attributes and
encode this via logical constraints. We refer to Fig. 2 (right)
for a minimal version of the program, and Suppl. C for the
full version.

The results of these experiments can be found in Fig. 4
(left). We observe that the average precision after conver-
gence on the held-out test set with SLASH Attention is
greatly improved to that of the baseline model. Additionally,
in Fig. 4 (right), we observe that SLASH Attention reaches
the average precision value of the baseline model in much
fewer number of epochs.

The goal of this evaluation was to test if we can observe
any overall advantage of SLASH and NPPs for such
a challenging visual reasoning task for which we had
introduced the specific instantiation of SLASH, SLASH
Attention. We can summarize that indeed by adding
logical knowledge to the training procedure via SLASH
one can greatly improve the capabilities of a neural module
exemplified here for set prediction. These results suggest
that the question of the independence of object attributes
(e.g., an object has one color, one form, etc.) can be
solved effectively by logic constraints. Consequentially, the
monolithic multicategorical MLP with shared parameters
used by (Locatello et al. 2020) is sufficient but not necessary.

Evaluation 5: Improved Compositional Generalization
with SLASH. Lastly, to test the hypothesis that SLASH
Attention possesses improved generalization properties in
comparison to a baseline neural model, we ran experiments
on a variant of ShapeWorld4 similar to the CLEVR Compo-
sitional Generalization Test (CoGenT) (Johnson et al. 2017).
The goal of CoGenT is to investigate a model’s ability to
handle novel combinations of attributes that were not seen
during training.

For this purpose, we established two conditions within a
ShapeWorld4 CoGenT data set: Condition (A) – the train-
ing and test data set contains squares with the colors gray,
blue, brown, or yellow, triangles with the colors red, green,
magenta, or cyan and circles of all colors. Condition (B)
– the training set is as in Condition (A). However, the test
set contains squares with the colors red, green, magenta, or
cyan, triangles with the colors gray, blue, brown, or yellow
and circles of all colors. The goal is to investigate how well
a model can generalize that, e.g., also squares can have the
color red, although never having seen evidence for this dur-
ing training.

The resulting average precision test scores are presented
in Fig. 4a (left). We observe that, even though SLASH
Attention with its corresponding program was not explic-
itly designed to handle composition generalization, it shows
greatly improved generalization capabilities. This can be
seen in the approx. 13% higher average precision scores
on the Condition (B) test set in comparison to the baseline
model. Importantly, this trend still holds even when tak-
ing the overall higher performance of SLASH Attention ob-
served in Condition (A) into account.

To summarize our findings from the experiments on
set prediction: we observe that adding prior knowledge
in the form of logical constraints via SLASH can greatly
improve a neural module in terms of performance and
generalizability. On a side note: training neural net-
works for novel tasks, often involves defining explicit
loss functions, e.g., Hungarian loss for set prediction.
This stands in contrast to SLASH: no matter the choice
of NPP and underlying task, the training loss remains
the same. Task-related requirements simply need to
be added as lines of code to the SLASH program. Thus,
it highlights SLASH’s versatility and flexibility even further.

Summary of Empirical Results. All empirical results to-
gether demonstrate that the expressiveness and flexibility of
SLASH is highly beneficial and can easily outperform state-
of-the-art: one can freely combine what is required to solve
the underlying task — (deep) neural networks, PCs, and
logic. Importantly, the results indicate the potential of NPPs
in general and PC-based NPPs, in particular, via SLASH.



4 Related Work
Neuro-Symbolic AI can be divided into two lines of re-
search, depending on the starting point, though both have
the same final goal: to combine low-level perception with
logical constraints and reasoning.

A key motivation of Neuro-Symbolic AI (d’Avila Garcez,
Lamb, and Gabbay 2009; Mao et al. 2019; Hudson and Man-
ning 2019; d’Avila Garcez et al. 2019; Jiang and Ahn 2020;
d’Avila Garcez and Lamb 2020) is to combine the advan-
tages of symbolic and neural representations into a joint
system. This is often done in a hybrid approach where a
neural network acts as a perception module that interfaces
with a symbolic reasoning system, e.g., (Mao et al. 2019;
Yi et al. 2018). The goal of such an approach is to mitigate
the issues of one type of representation by the other, e.g., us-
ing the power of symbolic reasoning systems to handle the
generalizability issues of neural networks and on the other
hand handle the difficulty of noisy data for symbolic systems
via neural networks. Recent work has also shown the advan-
tage of approaches for explaining and revising incorrect de-
cisions (Ciravegna et al. 2020; Stammer, Schramowski, and
Kersting 2021). Many of these previous works, however,
train the sub-symbolic and symbolic modules separately.

Deep Probabilistic Programming Languages (DPPLs) are
programming languages that combine deep neural networks
with probabilistic models and allow a user to express a prob-
abilistic model via a logical program. Similar to neuro-
symbolic architectures, DPPLs thereby unite the advantages
of different paradigms. DPPLs are related to earlier works
such as Markov Logic Networks (MLNs) (Richardson and
Domingos 2006). Thereby, the binding link is the Weighted
Model Counting (WMC) introduced in LPMLN (Lee and
Wang 2016). Several DPPLs have been proposed by now,
among which are Pyro (Bingham et al. 2019), Edward (Tran
et al. 2017), DeepProbLog (Manhaeve et al. 2018), and
NeurASP (Yang, Ishay, and Lee 2020).

To resolve the scalability issues of DeepProbLog, which
use Sentential Decision Diagrams (SDDs) (Darwiche 2011)
as the underlying data structure to evaluate queries,
NeurASP (Yang, Ishay, and Lee 2020), offers a solution
by utilizing Answer Set Programming (ASP) (Dimopou-
los, Nebel, and Koehler 1997; Soininen and Niemelä 1999;
Marek and Truszczynski 1999; Calimeri et al. 2020). In
contrast to query evaluation in Prolog (Colmerauer and
Roussel 1993; Clocksin and Mellish 1981) which may lead
to an infinite loop, many modern answer set solvers use
Conflict-Driven-Clause-Learning (CDPL) which, theoreti-
cally, always terminates. In this way, NeurASP changes the
paradigm from query evaluation to model generation, i.e.,
instead of constructing an SDD or similar knowledge repre-
sentation system, NeurASP generates a set of all potential
solutions (one model per solution) and estimates the proba-
bility for the truth value of each of these solutions. Of those
DPPLs that handle learning in a relational, probabilistic set-
ting and in an end-to-end fashion, all of these are limited to
estimating only conditional class probabilities.

Object-centric deep learning has recently brought forth
several exciting avenues of research by introducing induc-
tive biases to neural networks to extract objects from visual

scenes in an unsupervised manner (Zhang, Hare, and Prügel-
Bennett 2019; Burgess et al. 2019; Engelcke et al. 2020;
Greff et al. 2019; Lin et al. 2020; Locatello et al. 2020;
Jiang and Ahn 2020). We refer to (Greff, van Steenkiste,
and Schmidhuber 2020) for a detailed overview. A motiva-
tion for this specific line of investigation, which notably has
been around for a longer period of time (Fodor and Pylyshyn
1988; Marcus 2019), is that objects occurring as natural
building blocks in human perception and possess advanta-
geous properties for many cognitive tasks, such as scene un-
derstanding and reasoning. These works have shown great
success in extracting object-based representations via their
implicit architectural biases. However, an interesting avenue
is to also add explicit logical biases, e.g., via constraints
about objects and their properties in the form of logical state-
ments such as color singularity.

5 Conclusion and Future Work
We introduce SLASH, a novel DPPL that integrates neural
computations with tractable probability estimates and log-
ical statements. The key ingredient of SLASH to achieve
this are Neural-Probabilistic Predicates (NPPs) that can be
flexibly constructed out of neural and/or probabilistic cir-
cuit modules based on the data and underlying task. With
these NPPs, one can produce task-specific probability esti-
mates. The details and additional prior knowledge of a task
are neatly encompassed within a SLASH program with only
few lines of code. Finally, via Answer Set Programming
and Weighted Model Counting, the logical SLASH program
and probability estimates from the NPPs are combined to
estimate the truth value of a task-specific query. Our experi-
ments show the power and efficiency of SLASH, improving
upon previous DPPLs in the benchmark MNIST-Addition
task in terms of performance, efficiency, and robustness.
Furthermore, the generative MNIST-Addition task demon-
strates that via the generation of images which encapsulate
logical knowledge bases, we are moving from data-rich to
knowledge-rich AI. Importantly, by integrating a SOTA slot
attention encoder into NPPs and adding few logical con-
straints, SLASH demonstrates improved performances and
generalizability in comparison to the pure slot encoder for
the task of object-centric set prediction; a setting no DPPL
has tackled yet. Our results show the effectiveness and im-
proved utility of SLASH over previous DPPLs, as well as
the great potential overall of DPPLs to elegantly combine
logical reasoning with neural computations and uncertainty
estimates.

Interesting avenues for future work include benchmark-
ing SLASH on additional data types and tasks. One should
explore unsupervised and weakly supervised learning
using logic with SLASH and investigate how far logical
constraints can help unsupervised object discovery. An
interesting and important avenue for a broader usability
of NPPs, in particular, is to investigate the construction of
multicategorical NPPs. Furthermore, the ideas of the gener-
ative MNIST-Addition task should be investigated further.
As mentioned, one interesting approach to this end is the
hybrid generative-discriminative loss of (Peharz et al. 2019).
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