
Computer Science
Department
TU Darmstadt
Machine Learning Group

Monte Carlo Tree
Search-Minimax Hybrid in
AlphaZero
Bachelor thesis by Thi Thanh Tam Truong
Date of submission: 05.09.2023

Examiner: Prof. Kristian Kersting
Supervisor: M.Sc. Johannes Czech
Darmstadt, Technische Universität Darmstadt

Erklärung zur Abschlussarbeit
gemäß §22 Abs. 7 und §23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Thi Thanh Tam Truong, die vorliegende Bachelorarbeit ohne Hilfe
Dritter und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle
Stellen, die Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese
Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Fall eines Plagiats (§ 38 Abs. 2 APB) ein Täuschungsversuch
vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch
verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte
elektronische Fassung gemäß § 23 Abs. 7 APB überein.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische
Fassung dem vorgestellten Modell und den vorgelegten Plänen.

Darmstadt, 05.09.2023
Tam Truong

2

Abstract

AlphaZero, a program developed by DeepMind in 2017, achieved super-human perfor-
mance in Chess, Shogi, and Go through self-training, showing the potential of deep
reinforcement learning and Monte Carlo Tree Search(MCTS) in solving complex prob-
lems. Initially introduced for creating computer players in Go, MCTS replaced traditional
methods relying on heuristics and proved effective across domains. However, in some
adversarial domains like Chess, Minimax with alpha-beta pruning remains superior due
to MCTS’s selectivity, possibly missing critical moves. Minimax Search is a widely used
algorithm for two-player zero-sum games, focusing on finding the best move while consid-
ering the opponent’s optimal responses. It works well in games with complete information
but struggles in complex games with large decision spaces. Previous studies proposed
approaches to extract individual features of Minimax, such as Maximum Backpropagation,
Implicit Max Backups, and Power-mean Backpropagation, integrate them into MCTS, or
nest Minimax Search into MCTS, such as MCTS with Informed Cutoffs (MCTS-IC), and
MCTS with Informed Priors(MCTS-IP). This thesis aims to recreate and refine the previous
approaches in AlphaZero and then evaluate them in the Crazyhouse and Chess domains.
As a result, while Maximum Backpropagation shows no good results, Implicit Minimax
Backups and Power-mean Backpropagation outperform standard MCTS when the number
of nodes is low. The backpropagation techniques reveal standard MCTS vulnerabilities at
lower node counts, and the Power-mean PUCT method outperforms the other proposed
approaches in scenarios with a high number of nodes. Combining Minimax Search pruning
with MCTS (MCTS-IC) has significant impacts but is expensive.

3

Zusammenfassung

AlphaZero, ein von DeepMind im Jahr 2017 entwickeltes Programm, erreichte durch
Selbsttraining übermenschliche Leistungen in Schach, Shogi und Go, was das Potenzial von
tiefem Verstärkungslernen undMonte Carlo Tree Search (MCTS) bei der Lösung komplexer
Probleme zeigt. MCTS wurde ursprünglich für die Entwicklung von Computerspielern
in Go eingeführt und ersetzte traditionelle Methoden, die sich auf Heuristiken stützten,
und erwies sich in allen Bereichen als effektiv. In einigen gegnerischen Domänen wie
Schach bleibt Minimax mit Alpha-Beta-Beschneidung jedoch aufgrund der Selektivität
von MCTS, das möglicherweise kritische Züge übersieht, überlegen. Minimax Search ist
ein weit verbreiteter Algorithmus für Nullsummenspiele mit zwei Spielern, der sich darauf
konzentriert, den besten Zug zu finden und dabei die optimalen Antworten des Gegners
zu berücksichtigen. Er funktioniert gut bei Spielen mit vollständiger Information, hat aber
Probleme bei komplexen Spielen mit großen Entscheidungsräumen. In früheren Studien
wurden Ansätze vorgeschlagen, um einzelne Merkmale von Minimax zu extrahieren, wie
Maximum Backpropagation, Implicit Minimax Backups und Power-mean Backpropagation,
sie in MCTS zu integrieren oder Minimax Search in MCTS zu integrieren, wie MCTS with
Informed Cutoffs (MCTS-IC) und MCTS with Informed Priors (MCTS-IP). Diese Arbeit zielt
darauf ab, die vorherigen Ansätze in AlphaZero neu zu erstellen und zu verfeinern und sie
dann in den Domänen Crazyhouse und Chess zu evaluieren. Das Ergebnis: Während Max
Backpropagation keine guten Ergebnisse zeigt, übertreffen Implicit Minimax Backups und
Power-mean Backpropagation das Standard-MCTS, wenn die Anzahl der Knoten gering
ist. Die Backpropagationstechniken offenbaren die Schwachstellen des Standard-MCTS
bei einer geringeren Anzahl von Knoten, und die Power-Mean-UCT-Methode übertrifft
die anderen vorgeschlagenen Ansätze in Szenarien mit einer hohen Anzahl von Knoten.
Die Kombination von Minimax Search Pruning mit MCTS (MCTS-IC) hat erhebliche
Auswirkungen, ist aber teuer.

4

Contents

1. Introduction 7
1.1. Motivation . 7
1.2. Problem Statement . 8
1.3. Contributions of this Thesis . 9

2. Background 10
2.1. Monte Carlo Tree Search (MCTS) . 10

2.1.1. Upper Confidence bounds applied to Trees (UCT) 11
2.1.2. Virtual loss . 11
2.1.3. Virtual visits . 12

2.2. Minimax Tree Search . 12
2.3. Power Mean . 14

3. Related Works 16

4. MCTS-Minimax Hybrid 18
4.1. Maximum Backpropagation . 18
4.2. Implicit Minimax Backups . 19
4.3. Power-mean PUCT (Power-mean Backpropagation) 20
4.4. MCTS with Informed Cutoffs (MCTS-IC) 23
4.5. MCTS with Informed Priors (MCTS-IP) . 25

5. Evaluation and Discussion 27
5.1. Maximum Backpropagation . 28
5.2. Implicit Minimax Backups . 30
5.3. Power-mean PUCT (Power-mean Backpropagation) 31
5.4. MCTS with Informed Cutoffs (MCTS-IC) 35
5.5. MCTS with Informed Priors (MCTS-IP) . 36

5

6. Conclusion and Future Work 38

A. Appendices 39

6

1. Introduction

This chapter begins by outlining the motivation of this thesis. The problem statements
will be presented to define the specific issues addressed in the thesis. Lastly, the main
contributions of the thesis will be summarized.

1.1. Motivation

Search algorithms are essential strategies applied to different practical areas in computer
science, namely database systems, expert systems, robot control systems, and theorem
provers. In game development, search algorithms, and machine learning have been studied
for decades, thus resulting in highly effective optimization. Consequently, search engines
are the core of game-playing systems. Several search algorithms have been proposed to
improve search efficiency in many practical applications, such as the Minimax search with
alpha-beta(αβ) pruning [1], Monte Carlo Tree Search [2], etc.

AlphaZero [3] is a computer program developed by DeepMind [4], a research company
owned by Google, in 2017. This single system reaches super-human performance by
teaching itself from scratch how to master the games of Chess, Shogi, and Go [5]. Its
success has demonstrated the potential of deep reinforcement learning and Monte Carlo
Tree Search as a powerful approach to solving complex problems in various domains.
MCTS has been successfully applied in multiple domains, from Go, Amazon, and Lines of
Actions games to General Game Playing, planning, and optimization [6].

7

1.2. Problem Statement

Monte Carlo Tree Search (MCTS) is an advanced decision-making algorithm that explores
combinatorial spaces represented by search trees. In these trees, nodes correspond to
problem states or configurations, and edges represent transitions or actions between states.
Initially proposed to create computer players in Go [7], [8], MCTS was a groundbreaking
development, enabling a significant leap in performance from an average amateur level
(14 kyu) to an advanced level (5 dan) [9]. Before MCTS, bots for combinatorial games
relied on modified versions of the minimax alpha-beta pruning algorithm and hand-
crafted heuristics [10]. In contrast, MCTS is fundamentally heuristic-based, requiring no
additional knowledge beyond the game’s rules, though it can incorporate heuristics to
improve efficiency and convergence.

MCTS has shown considerable success in various domains [6], [11]. However, several
adversarial domains, such as the games of Chess and (International) Checkers, still exist in
which the traditional approach to adversarial planning, Minimax search with αβ pruning
[12], remains superior. The selectivity of MCTS, concentrating only on the most promising
lines of play, might be a contributing factor. In tactical games such as Chess, a large
number of terminal states and shallow traps exist in the search space [13]. These require
precise play to avoid immediate loss, and the selective sampling and averaging value
backups of MCTS can easily miss or underestimate a critical move. Conversely, MCTS
could be more effective in domains such as Go, where terminal states and potential traps
do not occur until the latest stage of the game. Here, MCTS can fully play out its strategic
and positional understanding resulting from Monte Carlo simulations of entire games.

Minimax Search [12] is a widely used decision-making algorithm in two-player, zero-sum
games such as Chess, checkers, and tic-tac-toe. Its main objective is to find the best move
for a player, assuming that the opponent will also make optimal moves. The essence of
Minimax lies in ensuring that the player maximizes their minimum possible outcome,
considering the opponent’s best responses at each step. The algorithm is particularly
effective for games where all players possess complete information about the current
game state, as seen in Chess, Checkers, or Tic-Tac-Toe. By exploring the entire game tree,
Minimax guarantees to find the optimal move that leads to the best possible outcome.
However, Minimax does have its limitations, especially when dealing with complex games
that have an extensive number of possible moves and states. In such cases, the sheer size
of the game tree can render an exhaustive search impractical. More advanced search
algorithms like Monte Carlo Tree Search (MCTS) or deep learning approaches may address
these challenges, enabling efficient decision-making in these intricate game scenarios.

8

Building on the understanding of MCTS and Minimax Search, numerous research endeav-
ors [14]–[18] have focused on enhancing MCTS performance by integrating or embedding
shallow Minimax Searches within its framework. Taking inspiration from these studies,
this thesis aims to replicate and refine the approaches used in AlphaZero. The goal is to
test and evaluate these advancements in two domains: Crazyhouse and Chess.

1.3. Contributions of this Thesis

The rest of this section summarizes the material in each of the remaining chapters, which
are organized as follows. Chapter 2 serves as an introduction, establishing the foundational
terminology for this thesis. It begins with a comprehensive overview of MCTS, followed by
the definition of Minimax Search. Additionally, the chapter briefly introduces the Power
Mean operator. In Chapter 3, related works relevant to this thesis are reviewed. Chapter
4 delves into the reproduction of MCTS-Minimax Hybrid approaches in the AlphaZero
framework. The process of adaptation and implementation is elaborated upon. Chapter 5
presents the experimental results, showcasing the efficiency and quality of the proposed
methods through empirical evidence. Lastly, Chapter 6 contains the conclusion of this
thesis and potential works for future research.

9

2. Background

This section explores the foundations of three essential game-playing algorithms: the
Monte Carlo Tree Search (MCTS), the Minimax Tree Search, and the innovative combina-
tion of MCTS and Power Mean.

2.1. Monte Carlo Tree Search (MCTS)

MCTS is the best-first approach to tree search. There are many extension versions of
MCTS, such as MCTS-Solver [19] or Monte-Carlo Graph Search (MCGS) [20]. Due to
space limitations, only the classical version of MCTS is discussed. It repeats the following
four-phase loop until computation time runs out [21]. Each iteration of the loop represents
one simulated game.

• Selection phase: The tree traversal in Monte Carlo Tree Search begins at the root
and moves towards one of its leaf nodes. A selection policy determines which move
to sample at each state. The selection policy aims to balance exploiting states with
high-value estimates and exploring states with uncertain value estimates.

• Expansion phase: When the selection phase does not reach a terminal state, the
expansion phase involves adding at least one new child node to the memory’s tree
representation. This newly added node corresponds to a form achieved by executing
the last action in the selection phase. However, in the rare event that expansion
does reach the terminal state, the current iteration bypasses additional steps and
proceeds directly to backpropagation.

• Simulation phase: The rollout process involves simulating actions from the current
state to the end of the episode, employing either random actions or a heuristic. In
some instances, multiple rollouts may be utilized to effectively evaluate a single leaf
node.

10

• Backpropagation phase: It propagates the payoffs for all modeled agents in the
game back to all nodes along the path from the last visited node in the tree (the leaf
one) to the root. The statistics are updated.

2.1.1. Upper Confidence bounds applied to Trees (UCT)

The UCT algorithm [7] builds on Upper Confidence Index 1(UCB1) [22], an algorithm
designed to optimally trade-off exploration and exploitation in multi-armed bandit prob-
lems. At each time step t and state st, a fresh action at is chosen using the UCT-formula
2.1 until reaching either a novel unexplored state s∗ or a terminal node sT .

at = argmaxa(Q(st, a) + U(st, a))

where U(s, a) = cpuctP (s, a)

√︁∑︁
bN(s, b)

1 +N(s, a)
.

(2.1)

The new unexplored state s∗ is expanded and assessed using the neural network fθ.
Subsequently, the predicted policy P (s, ai) is applied to all potential actions ai, and the
state evaluation v∗ is propagated back through the traversed search trajectory. For a
concluding state sT , a consistent appraisal of either -1, +1, or 0 is employed. The value
assessment v∗ is periodically negated and integrated into the corresponding Q-values from
the leaf node to the root as Equation 2.2 in the backup phase.

Q′(st, a) = Q(st, a) +
1

n
[v∗ −Q(st, a)]. (2.2)

2.1.2. Virtual loss

Virtual loss is introduced as a technique to address redundancy in tree exploration during
parallelized MCTS. When multiple threads start from the root and traverse the tree, the
same paths or neighboring leaf nodes may be explored. Since the search tree can have
millions of nodes, exploring a small portion of the tree multiple times can be inefficient.
Virtual loss is assigned to a node when a thread visit is proposed to mitigate this redundancy.

11

That means that the Q-value of the node is decreased, and the visit counter is increased.
When the virtual loss equals 1, the Q-value of a specific element undergoes an update
as if an additional loss had been encountered within its corresponding subtree. The
following thread will only select the same node if its value remains better than the values
of its siblings. The virtual loss is removed when the line assigned the virtual loss starts
propagating the result of the finished simulated game. By using virtual loss, all threads
will still explore nodes that are better than others. However, nodes for uncertain value
will not be examined by more than one thread, reducing redundancy and improving the
balance between exploration and exploitation in a parallelized MCTS program.

2.1.3. Virtual visits

Based on the concept of virtual loss, virtual visits offers another efficient approach to
reducing redundancy and improving exploration-exploitation balance in parallelized
MCTS. In contrast to virtual loss, virtual visits is applied to the selected node without
changing its mean value. This relieves the complexity of calculating the original mean
value for updating a new value during the backpropagate phase.

By using virtual visits, the overall efficiency and effectiveness of the parallelized MCTS
program are substantially enhanced, providing a more refined and robust exploration
process.

2.2. Minimax Tree Search

Minimax Search is a widely used algorithm in artificial intelligence and game theory,
specifically for two-player, zero-sum games. It determines the best possible move for
a player in a given game position, assuming both players are playing optimally. The
algorithm aims to maximize the player’s potential gain while minimizing the opponent’s
potential gain. The key idea behind the Minimax Search is to construct a game tree that
represents all possible moves and their consequences up to a certain depth or horizon.
The algorithm then evaluates the leaf nodes of the tree using a static evaluation function,
which estimates the desirability of each game position for the player. The procedure of
Minimax Search is summarized in the following Algorithm 1.
Additionally, Minimax Search can be optimized with alpha-beta pruning [12], which
significantly reduces the number of nodes explored in the game tree, making it more

12

efficient and practical for complex games with large branching factors. Negamax is a
variation of the Minimax Search algorithm for finding the optimal move in two-player,
zero-sum games. It is a more compact and elegant way of writing the Minimax Search
algorithm. Negamax takes advantage of the property that in two-player zero-sum games,
the value of a player’s move is the negation of the opponent’s move value. Algorithm 2
summarizes the Negamax with alpha-beta pruning Algorithm.

Algorithm 1 Recursive Minimax
1: procedure Minimax(S,Maximizing = True)
2: if S is terminal then
3: return Utility(S)
4: end if
5: if Maximizing = True then
6: v ← −∞
7: for each child ∈ S do
8: v ← max(v,Minimax(child, False))
9: end for

10: return v
11: else
12: v ← +∞
13: for each child ∈ S do
14: v ← min(v,Minimax(child, T rue))
15: end for
16: return v
17: end if
18: end procedure

13

Algorithm 2 Negamax with alpha-beta pruning
1: procedure negamax(node,depth, alpha, beta)
2: if depth = 0 or node is a terminal node then
3: return the heuristic value of node
4: end if
5: childNodes← genarateMoves(node)
6: childNodes← orderMoves(childNodes)
7: v ← −∞
8: for each child ∈ childNodes do
9: v ← max(v,−negamax(child, depth− 1,−β,−α))

10: α← max(α, v)
11: if α ≥ β then
12: break (*cut-off*)
13: end if
14: end for
15: return v
16: end procedure

2.3. Power Mean

The Power Mean [23] is an operator to combine numbers specially. It includes different
types of averages like arithmetic, geometric, and harmonic means, depending on a value
called p. Setting p = 1 yields the weighted arithmetic mean. When p→ 0, the result is the
geometric mean; with p = −1, it becomes the harmonic mean. Additionally, the minimum
value is achieved by p→ −∞ (2.4), while p→ +∞ leads to the maximum value (2.5).
Definition 1. For a sequence of positive numbers X = (X1, . . . , Xn) and positive weights
w = (w1, . . . , wn), the power mean of order p (p is an extended real number) is defined as
Equation 2.3:

M [p]
n (X,w) =

(︃∑︁n
i=1wiX

p
i∑︁n

i=1wi

)︃ 1
p

. (2.3)

M [−∞]
n (X,w) = lim

p→−∞
M [p]

n (X,w) = Min(X1, . . . , Xn). (2.4)

14

M [+∞]
n (X,w) = lim

p→+∞
M [p]

n (X,w) = Max(X1, . . . , Xn). (2.5)

It has been proven that M [p]
n (X,w) is an increasing function(2.6), and it can be upper

bound by average mean plus with a constant [23].

M [1]
n (X,w) ≤M [q]

n (X,w) ≤M [p]
n (X,w), ∀p ≥ q ≥ 1. (2.6)

15

3. Related Works

Previous work on developing algorithms influenced by MCTS and Minimax Search has
taken two principal approaches. On the one hand, one can extract individual features
of Minimax, such as Minimax-style backups, and integrate them into MCTS. The first
technique of Minimax-influenced backup rules in the simulation-based MCTS framework
was Coulom’s original Maximum Backpropagation [16]. This method suggests after several
simulations of a node have been reached, switching to the propagation of the maximum
value instead of the simulated (average) value. The motivation is that after a certain point,
the search algorithm should consider a node converged and return an estimate of the
best value. This backpropagation has also lately been used in other Monte-carlo search
algorithms and demonstrated success in probabilistic planning, as an alternative type of
forecaster in BRUE [24], and as Bellman backups for online dynamic programming in
Trial-based Heuristic Tree Search [25]. Later, Marc Lanctot et at. [17] proposed using
Implicit Minimax Backups to strengthen play performance in Kalah [26], Breakthrough
[27], and Lines of Action [28]. This approach uses heuristic evaluations to guide the
MCTS search by storing the two sources of information, estimated win rates and heuristic
evaluations, separately. Both minimaxing backups of heuristic evaluations and averaging
backups of rollout returns are managed simultaneously.
On the other hand, one can nest Minimax Search into MCTS. The study of Hendrik Baier
et al. [14] discusses three approaches to integrate Minimax with pruning into the MCTS
framework. These are Minimax in the Rollout Phase(MCTS-MR), Minimax in the Se-
lection and Expansion Phases (MCTS-MS), and Minimax in the Backpropagation Phase
(MCTS-MB). A novel variant, MCTS-MS, outperforms regular MCTS in games like Catch
the Lion, Breakthrough, and Connect-4 [29], while MCTS-MB excels in Catch the Lion and
Breakthrough. MCTS-MR is strong in Catch the Lion [30] and Connect-4 but weaker in
Breakthrough, likely due to differences in average branching factors. The study suggests
that MCTS-minimax hybrids are less effective in games like Othello [31] and Go. The
success of MCTS-minimax hybrids is influenced by trap density and difficulty. MCTS-MR
is suited for low branching factor domains, while MCTS-MS and MCTS-MB handle higher

16

branching factors. Baier et al. [14] proposed incorporating domain knowledge into
hybrids through evaluation functions or moving to order. Challenges arise in combining
heuristic evaluations with rollout results. The study indicates that move ordering could be
effective, especially in games like Breakthrough.
Another study by Baier et al. [32] delves into the research on MCTS-minimax hybrids,
focusing on cases where heuristic evaluation functions are available as domain knowledge.
Three approaches were examined for incorporating this knowledge into MCTS: MCTS-IR
enhances the rollout policy, MCTS-IC employs it for early rollout termination, and MCTS-
IP utilizes it as prior for tree nodes. The study introduced enhancements such as move
ordering and k-best pruning, improving hybrid players like MCTS-IR-M-k, MCTS-IC-M-k,
and MCTS-IP-M-k. Experiments revealed that enhanced Minimax (MCTS-IP-M-k) im-
proved MCTS performance across domains, particularly in low-time settings. Additionally,
combining MCTS-IP-M-k with minimax rollouts led to further enhancements. Notably, the
best-performing hybrid surpassed a simple αβ implementation in Breakthrough, show-
casing the potential strength of integrating MCTS and Minimax. Different directions for
research were suggested, including exploring additional αβ enhancements, optimizing
the exploitation of heuristic knowledge, studying domain-specific influences, evaluating
the quality of evaluation and move ordering functions, and using artificial game trees to
isolate specific effects.
Furthermore, some studies try to improve the UCT algorithm in MCTS. Khandelwal et
al. [18] formalized and analyzed different on-policy and off-policy complex backup ap-
proaches for MCTS planning based on techniques in the Reinforcement Learning literature.
In this study, four novel MCTS variants are proposed: MCTS(λ), MaxMCTS(λ), MCTSγ,
and MaxMCTSγ. Through benchmarking with various IPC domains, the authors demon-
strate that the choice of backup strategy significantly impacts performance. Among the
proposed approaches, MaxMCTSγ is parameter-free and performs as well as or better than
Monte Carlo backups in all tested domains. Another approach, MaxMCTS(λ), outperforms
all other proposed and existing MCTS variants. It is observed that an intermediate value
of λ between 0 and 1 is necessary for optimal performance, unlike existing algorithms
that use extreme values. The authors hypothesize that MaxMCTS(λ) with a low λ value
excels in domains with infrequent high-reward trajectories and provide empirical evi-
dence to support this hypothesis. However, they do not provide any proof of convergence.
Meanwhile, Tuan Dam et al. [15] proposed a novel backup strategy called Power-UCT.
This approach uses the power mean operator [33], which computes a value between the
average and maximum value.

17

4. MCTS-Minimax Hybrid

This thesis primarily focuses on reproducing and enhancing themethodologies of Maximum
Backpropagation (4.1), Implicit Minimax Backups (4.2), Power-mean PUCT (4.3), MCTS
with Informed Cutoffs (4.4) and MCTS with Informed Priors (4.5). The ultimate goal was
to optimize the performance of AlphaZero and evaluate its effectiveness in two diverse
domains: Chess and Crazyhouse.

Throughout this research, a dedicated effort was made to comprehensively explore and
adapt the existing approaches to suit the specific requirements of AlphaZero. This involved
integrating novel insights and refining strategies to enhance its capabilities further. The
intent was to contribute significantly to the ongoing advancements in AI-powered gaming
agents and to optimize their decision-making processes. This section elaborates on the
process of recreating and optimizing the previous methodologies in CrazyAra while simul-
taneously determining the optimal threshold for the two domains: Chess and Crazyhouse.
This comprehensive analysis aimed to shed light on the performance and adaptability of
AlphaZero in different gaming scenarios.

MCTS-Minimax hybrid approaches are the combination of both MCTS and minimax.
These approaches involve extracting particular features of minimax, such as minimax-style
backups(Maximum Backpropagation, Implicit Minimax Backups, and Power-mean PUCT),
and seamlessly integrating them into MCTS. Another technique explored in this context is
the nesting of minimax searches within MCTS searches.

4.1. Maximum Backpropagation

Maximum Backpropagation[16] is a technique employed in the backpropagation phase
of the Monte Carlo Tree Search (MCTS) algorithm. It involves updating the value of a
node by selecting the maximum value among its child nodes. Equation 4.1 shows the

18

updated form of a node with Maximum Backpropagation. This update is triggered once
the node has reached a specific number of visits. If the visit count is below the threshold,
the Mean Backpropagation algorithm is used instead. By implementing this approach,
the node’s value is determined based on the highest value observed among its children,
thereby increasing the overall effectiveness of the backpropagation process within MCTS.

ˆ︁V (s, a) = maxa∈A(s)Q(s, a). (4.1)

The primary rationale for switching from the average operator to the maximum operator
is considering the number of simulations. The average operator is typically employed
when the number of simulations is low. This conservative approach updates the nodes
cautiously due to the limited number of samples available. Conversely, the maximum
operator is favored when the number of simulations is high [15]. This choice allows for
a more decisive update, leveraging the plenty of simulations to make more confident
decisions. This incorporation of thresholds provides better control and fine-tuning of the
algorithm, resulting in improved overall performance.

4.2. Implicit Minimax Backups

Implicit Minimax Backups [17] is another strategy utilized during the backpropagation
phase of the MCTS algorithm. This technique incorporates a supplementary value into
each node to enhance the estimator value of a state-action pair (s, a). Specifically, this
new value at the node s is a heuristic minimax value derived from evaluating subtrees
beneath s. As the backpropagation progresses, the updates of rs and ns are performed
in the usual way, and the additional value vτs is updated using the minimax backup rule
based on children’s values. For the selection phase, we use ˆ︁QIM in Equation 4.2

ˆ︁QIM (s, a) = (1− α)
rτs,a
ns,a

+ αvτs,a. (4.2)

where α weights the influence of the heuristic minimax value. The threshold for the
algorithm will be determined based on the minimax weight.

19

4.3. Power-mean PUCT (Power-mean Backpropagation)

Typically, the average backup is favored when there are a low number of simulations,
ensuring a conservative update of nodes due to limited samples. Conversely, the maxi-
mum operator is preferred with a high number of simulations. Therefore, Tuan Dam et
al.[15] introduced a novel backup strategy that utilizes the power mean operator. This
strategy calculates a value that falls between the average and maximum values to get both
advantages. The Q-Value is calculated as Equation 4.3, where s is the current state, and
s′ is the next state.

ˆ︁QPM (s, a) =

(︃∑︂
a

n(s′, a)

n(s, a)
ˆ︁QPM (s′, a)p

)︃ 1
p

. (4.3)

The original Power Mean PUCT method assumes that all tree values are positive. However,
in AlphaZero, the tree values lie within the range of [-1, 1] or [0, 1]. This presents a
significant challenge when calculating the value using the exponent because of the pow()
function’s limitation with negative values. To address this issue, a proposed solution
involves shifting the values to the range [0, 2], performing the necessary calculations,
and then shifting back the result to the range [-1, 1] before updating the new value.
Additionally, Tuan Dam et al. [15] have presented proof of convergence for Power-mean
PUCT, which ensures convergence for any finite value of p. Hence, applying value shifting
when employing the Power-Mean PUCT method for the tree is reasonable.

ˆ︁QPM (s, a) =

(︃
(1 + r0)

p

n(s, a)
+
∑︂
a

n(s′, a)

n(s, a)
(1 + ˆ︁QPM (s′, a))p

)︃ 1
p

− 1. (4.4)

When adapting AlphaZero’s requirements and data structure for calculating power mean
PUCT, it becomes essential to include a node’s initial value r0 and aggregate all the values
from its child nodes. This ensures that Power Mean PUCT will simplify to mean PUCT
when p = 1. The Equation 4.4 is the extended version of Equation 4.3 in AlphaZero.
A straightforward and efficient solution to compute the power mean value in AlphaZero is
presented without the necessity of traversing all child nodes during backpropagation. The
approach involves utilizing an additional value t(s, a), which is calculated as shown in
Equation 4.6.

20

ˆ︁QPM (s, a) =

(︃
t(s, a)

n(s, a)

)︃ 1
p

− 1. (4.5)

t(s, a) = (1 + r0)
p +

∑︂
a

n(s′, a)
(︁
1 + ˆ︁QPM (s′, a)

)︁p
. (4.6)

Upon expanding a new child node, its value will be directly integrated into the parent
node’s t(s, a) value. However, suppose the child node has been previously expanded. In
that case, the older value and its respective visit count will be replaced by the updated
value and the current visit count in the parent node’s t(s, a) value. The entire process is
summarized in Algorithm 3.

Power-mean PUCT demonstrates promising performance under limited simulation num-
bers. Nevertheless, as the number of simulations increases, its effectiveness diminishes due
to the growing computational complexity. This work introduces two novel approaches that
address this limitation by combining Power-mean PUCT with mean PUCT or maximum
value updates. Initially, Power-Mean PUCT is employed, transitioning to mean PUCT or
maximum value updating once a specific number of visits is reached.

21

Algorithm 3 Power-PUCT in Alphazero
1: procedure select action(s)
2: return argmaxa(ˆ︁QPM (s, a) + PUCT (s, a))
3: end procedure
4:
5: procedure simualte(sparent,aparent,s)
6: if ∃a ∈ A(s), s′ = T (s, a) /∈ G then
7: expand(s)
8: r ← playout(s)
9: ts ← (1 + r)p

10: tsparent ← tsparent + (1 + r)p

11: ˆ︁QPM (s, a) = r
12: ns ← 1
13: else
14: if s ∈ Z then
15: return R(s′, a, s)
16: end if
17: a← select action(s)
18: s′ ← T (s, a)
19: tsparent ← tsparent − ns

(︁
1 + ˆ︁QPM (s, a)

)︁p
20: simulate(s, a, s′)
21: ns ← ns + 1

22: ˆ︁QPM (s, a)← (ts
ns
)
1
p − 1

23: tsparent ← tsparent + ns

(︁
1 + ˆ︁QPM (s, a)

)︁p
24: end if
25: end procedure
26:
27: procedure MCTS(s0)
28: while time left do
29: simulate(−,−, s0)
30: end while
31: return argmaxa∈A(s0)

ns0,a

32: end procedure

22

4.4. MCTS with Informed Cutoffs (MCTS-IC)

The concept of rollout cutoffs involves stopping a simulation early if it becomes possible
to predict the winner or advantaged player using an evaluation function. This helps
avoid noise from extended rollouts. Instead of completing the full rollout, the current
state is evaluated, and the result is propagated. This can increase sampling speed if the
evaluation function is quicker than finishing the rollout. Some rollouts are played before
evaluation to introduce diversity. Baier et al. [32] proposed MCTS with the Informed
Cuttoffs approach, which avoids determinism by randomly selecting equally valued moves.
They also suggested an extension involving a depth-d Minimax Search for backpropagation
value determination, which is called MCTS-IC-M.
Since both Minimax Search and MCTS in the original MCTS-IC-M use the same heuristic
evaluation and involve making random moves during rollouts, an attempt was made to
incorporate deep neural network evaluation, which is commonly used in the Alphazero
framework, into Minimax Search, similar to the approach taken in our MCTS strategy.
However, the significant computational load and time limitations linked to deep neural
network evaluation were acknowledged, resulting in its replacement with the more
efficient Stockfish-121 classical handcrafted evaluation in the Minimax Search process.
This decision was motivated by Stockfish’s impressive search speed and efficient pruning
mechanisms. Stockfish’s prowess can be attributed to its extensive opening book and vast
database of human grandmaster games, which augment its already formidable gameplay.
The engine’s training with traditional chess knowledge and algorithms further bolsters its
performance. To speed up the Minimax Search, we use the Negamax algorithm instead.

1https://github.com/official-stockfish/Stockfish

23

https://github.com/official-stockfish/Stockfish

MAX

MIN

MAXMAX

(a) The selection phase.

MAX

MIN

MAX

0.7 0.30.6

0.60.7 0.7 0.3

0.7 MAX

MIN

MAX

(b) The resulting position is evaluated
with a d = 2 minimax search. The
heuristic evaluation is 0.7 for the
maximizing player.

MAX

MIN

MAXMAX

V=V+1
update_qValue(-0.7)

V=V+1
update_qValue(0.7)

V=V+1
update_qValue(-0.7)

V=V+1
update_qValue(0.7)

0.7

(c) This value is backpropagated with
mean backup.

Figure 4.1.: The MCTS-IC hybrid with depth d = 2.

24

4.5. MCTS with Informed Priors (MCTS-IP)

Using node priors is presented as a method to support the selection policy in MCTS (Monte
Carlo Tree Search) by incorporating heuristic information. Upon adding a new node to
the tree or after a certain number of visits, the corresponding state’s heuristic evaluation is
stored as virtual wins and losses, weighted by a prior weight parameter w. This technique
facilitates tree growth in a promising direction, given that heuristic evaluations are more
reliable than MCTS value estimates derived from limited samples. However, as nodes
are visited frequently, the influence of the prior diminishes over time, and MCTS rollouts
progressively take precedence over the heuristic evaluation. Baier et al. [32] introduced
two approaches: MCTS-IP-E, which employs heuristic evaluations, and MCTS-IP-M, which
extends the method MCTS-IP-E with a depth-d minimax search to compute more precise
prior values, thereby enhancing the selection policy in the MCTS tree.
An advanced version of the MCTS-IP-M algorithm has been developed, and specific mod-
ifications have been implemented to enhance its performance significantly. Instead of
relying on the evaluation method used in the original MCTS, the robust evaluation of
Stockfish is strategically used.

In contrast to the MCTS-IP-M proposal by Baier et al., the Minimax Search is strategically
activated only after a node has accumulated a specific number of visits. After a node has
been visited n times, the heuristic evaluation h of the corresponding state is stored in this
node with a prior weight parameter γ. The following formulas (4.7, 4.8) show how to
update the visit (n) counters and the value (qV alue) of the node at hand.

n′ ← n+ γ. (4.7)

qV alue′ ← qV alue · n+ γ · h
n′ . (4.8)

An example is shown in Figure 4.2.

25

MAX

MIN

MAX

(a) The selection phase.

MAX

MIN

MAX

V: 2
qValue: 0.3

(b) A tree node with v = n = 2 visits is
encountered

0.6

0.7 0.6 0.5 0.5 0.8

0.6 0.5

MAX

MIN

MAX

(c) This triggers a d = 2 minimax search.
The heuristic evaluation is v = 0.6 for
the maximizing player.

MAX

MIN

MAX

V: 4
qValue: 0.45

(d) This value is stored in the node in form
of γ = 2 virtual visits, n′ = n + γ =
2 + 2 = 4 and qV alue = n·0.3+γ·0.6

n′ =
2·0.3+2·0.6

4 = 0.45.

Figure 4.2.: The MCTS-IP-M hybrid. n = 2, d = 2, and γ = 2.

26

5. Evaluation and Discussion

The algorithms were tested in two domains: Chess and Crazyhouse. These are all de-
terministic perfect-information turn-taking zero-sum games. To assess the algorithms,
tournaments with each proposed approach against the standard MCTS with virtual visits
were executed under identical environment settings using Cutechess-cli1. The match
outcomes were evaluated using the ELO rating system [34], with runtime excluded from
this evaluation.
Chess is a two-player strategy board game played on a square board divided into 64
squares of alternating colors. Each player controls an army of 16 pieces consisting of one
king, queen, rooks, knights, bishops, and pawns. The game’s objective is to checkmate the
opponent’s king, which means putting the king into a position where it is under attack
and cannot escape capture.
Crazyhouse, also known as drop chess, allows players to reintroduce captured pieces, which
switch sides and are kept in the capturing player’s pocket. The game follows classical
chess rules, including castling and en passant capture. Instead of a regular move, players
can drop pocket pieces onto empty squares, except for pawns on the first or eighth rank.
This feature resembles shogi but with the unique twist that pawns can be dropped for an
immediate checkmate. Crazyhouse’s tactical depth is higher than conventional Chess due
to pieces never leaving the game, leading to more checkmates and shorter game lengths.
The ability to drop pieces for checks allows for long forced checkmating sequences. The
game is widespread, especially in online communities, and is often played with short-time
controls.
This section is organized as follows. Experimental results for Maximum Backprobaga-
tion (5.1), Implicit Minimax Backups (5.2), Power-Mean PUCT (5.3), MCTS-IC(?? ,and
MCTS-IP (5.5) in 2 domains are presented.

1https://github.com/cutechess/cutechess

27

https://github.com/cutechess/cutechess

5.1. Maximum Backpropagation

Initially, the focus was on examining the Q-value update, limited to utilizing only the max-
imum value from child nodes. This examination was conducted without using a transition
from mean value to max value after multiple visits. Figure 5.1 shows the performance of
this approach in Chess and Crazyhouse. When working with a limited number of nodes,
exclusively employing max backpropagation outperforms the standard MCTS approach
only in the Chess domain. Nevertheless, as the node count rises, there is a progressive
decline in Elo ratings, and the standard MCTS is outperformed.
Subsequently, the Maximum Backpropagation concept was tested by transitioning the
parameter n from the set {700, 800, 900, 1000, 1100} of switching from mean values to
maximum values. It is assumed that the average backup is usually used when the number
of simulations is low for a conservative update of the nodes due to the lack of samples.
Conversely, the maximum operator is favored when the number of simulations is high
[15]. Hence, Maximum Backpropagation was evaluated with an initial parameter value
of n = 700 and a tournament involving 1500 nodes. The outcomes are depicted in
Figures 5.2a and 5.2b. When the switching number is elevated, the corresponding Elo
Rating exceeds that of lower switching numbers when considering the same number of
nodes. Specifically, as the number of nodes and simulations increases, the basic MCTS
approach outperforms the Max Backpropagation strategy. These findings emphasize that
Max Backpropagation does not yield favorable results in Chess and Crazyhouse scenarios.
Furthermore, a higher switching number leads to a higher Elo Rating due to the limited
usage of the maximum value, resulting in reduced adverse impact on the agent.
The Maximum Backpropagation doesn’t perform effectively because, during the Back-
propagation phase, the maximum value of child nodes replaces the average Q-value.
This means that a node will keep getting chosen in the selection phase if its Q-value
remains the highest. As a result, the search tree keeps favoring the same exploration
path, potentially overlooking critical moves. The scalability analysis of Silver et al. [3]
indicates that AlphaZero’s MCTS strategy outperforms Stockfish’s alpha-beta search in
terms of scalability with increasing thinking time, challenging the traditional belief that
alpha-beta search is inherently superior in Chess and shogi domains. This means that
in the Chess and shogi domains, standard MCTS with the average backup outperforms
MCTS with the maximum operator when the number of nodes and simulations is high.
This also strengthens our findings.

28

250 500 750 1000 1250 1500
Number of Nodes

−300

−250

−200

−150

−100

−50

0

50

R
el

at
iv

e
E

lo

Chess
Crazyhouse

Figure 5.1.: The Comparison of the Elo development concerning the count ofMCTS nodes
between Chess and Crazyhouse while retaining maximum values instead
of transitioning from mean values to maximum values. With a limited node
count, this approach outperforms standard MCTS in Chess, but higher node
counts decrease Elo ratings.

1500 2000 2500 3000 3500
Number of Nodes

−120

−100

−80

−60

−40

−20

0

20

40

R
el

at
iv

e
E

lo

n=700
n=800
n=900
n=1000
n=1100

(a) Max Backpropagation in Chess.

1500 2000 2500 3000 3500
Number of Nodes

−120

−100

−80

−60

−40

−20

0

20

40

R
el

at
iv

e
E

lo

n=700
n=800
n=900
n=1000
n=1100

(b) Max Backpropagation in Crazyhouse.

Figure 5.2.: Elo development of Maximum Backpropagation for different numbers of
visits to switch frommean value to maximum value in Chess and Crazyhouse.
With a high switching number, the Elo Rating is higher than the Elo Rating of
lower switching numbers when considering the same number of nodes.

29

5.2. Implicit Minimax Backups

Implicit Minimax Backups were assessed using various minimax weight (α) parameters
within the range of [0.1, ..., 0.9]. The Elo progression for each α is visualized in Figure
5.3a for Chess and Figure 5.3b for Crazyhouse. Notably, the Implicit Max Backups strategy
performs better when the number of nodes and simulations remains limited. The Elo
rating peak 71.9 is particularly noteworthy, achieved with α ∈ {0.8, 0.9} for 100 nodes in
Chess. However, this performance decreases swiftly as the number of Nodes increases. For
α ∈ {0.4, 0.5, 0.6}, the Elo ratings aren’t as great as those within the scope of {0.8, 0.9}.
Yet, they show more stability, with Elo ratings slowly declining as the number of nodes
increases. In contrast to the Chess domain, Crazyhouse experiences a less pronounced
Elo increase with α ∈ {0.8, 0.9}. For α ∈ {0.5, 0.6, 0.7}, the Implicit Minimax Backups
approach outperforms the competition up to 800 nodes. Implicit Minimax Backups
generally performs strongly when the number of nodes is limited in both Chess and
Crazyhouse domains.

250 500 750 1000 1250 1500
Number of Nodes

−200

−150

−100

−50

0

50

100

R
el

at
iv

e
E

lo

α=0.1
α=0.2
α=0.3
α=0.4
α=0.5
α=0.6
α=0.7
α=0.8
α=0.9

(a) Implicit Minimax Backups in Chess.

250 500 750 1000 1250 1500
Number of Nodes

−200

−150

−100

−50

0

50

100

R
el

at
iv

e
E

lo

α=0.1
α=0.2
α=0.3
α=0.4
α=0.5
α=0.6
α=0.7
α=0.8
α=0.9

(b) Implicit Minimax Backups in Crazy-
house.

Figure 5.3.: Elo development of Implicit Minimax Backups in Chess and Crazyhouse. The
approach shows strong performance when the number of nodes is low in
both domains.

The study of Marc Lanctot et at. [17] acknowledges that while it achieved positive
results across various domains, the technique’s broad applicability is constrained by its
dependence on domain-specific tactical and strategic insights acquired through implicit

30

minimax and playouts. This limitation becomes evident in the experiments conducted
with Chinese Checkers and Hearts, underscoring the need for continued investigation
employing more advanced evaluation functions. As a result, it’s reasonable that the
technique might be less effective in domains such as Chess and Crazyhouse. Nevertheless,
it’s important to note that the Implicit Minimax Backups approach performs exceptionally
well when node counts are low, and implementing the Implicit Minimax Backups algorithm
is straightforward.

5.3. Power-mean PUCT (Power-mean Backpropagation)

Power-mean Backpropagation was evaluated using power mean (p) values from the set
{1.5, 2.2, 3, 4, 5, 6, 7}. Initially, 1.5 and 2.2 were chosen based on the recommendations
of Tuan Dam et al. [15]. Subsequently, higher power mean values ranging from 3 to 7
were explored to determine the optimal setting. The results, including the Chess and
Crazyhouse domains, are presented in Figure 5.4.

Our findings highlight that Power-mean Backpropagation performs better when p falls
within {4, 5, 6} in both Chess and Crazyhouse. In the Chess domain, Elo ratings begin to
decline beyond 800 nodes. Conversely, within Crazyhouse, Power-mean Backpropagation
shows commendable results up to 2400 nodes, with an incremental decline observed from
3200 nodes. The reduction in the Elo Rating of Power-mean PUCT as node count increases
can be attributed partly to the complexities involved in its calculations. Moreover, the
shifting computations can increase the rounding errors in scenarios with a large number
of child nodes, potentially leading to inaccurate Q-value calculations. The proof of exact
Q-value calculation following shifting remains unestablished.

A hybrid approach was pursued to enhance performance by combining Power-mean Back-
propagation with Mean- or Max Backpropagation. This hybridization involves transitioning
from Power Mean PUCT to Mean PUCT or the maximum value of child nodes after a
specific number of visits. The goal was to explore whether this novel combination is more
stable and effective under high node and simulation counts.

Within this context, p ∈ {4, 5, 6} is selected and incrementally increased the number of
visits to ascertain the optimal threshold. Notably, a performance weakening in Chess
was recognized at around 2400 nodes, leading to the definition of the threshold for
Chess through the 2400 nodes test. In contrast, in Crazyhouse, where Power-mean
Backpropagation retained its superiority at 2400 nodes, testing was initiated from 3200

31

nodes using the same power mean values. Figure 5.5 illustrates the performances of
the hybrid approach combining Power-mean PUCT with mean PUCT. Figure 5.6 shows
the hybrid approach combining Power-mean PUCT with Max Backpropagation. Both
new approaches have shown slight effectiveness in their combined forms. However, the
standard MCTS beats the combination involving Mean Backpropagation for tournaments
with high node counts. Simultaneously, the Max Backpropagation combination shows a
slight advantage over the standard MCTS for specific switching numbers. Nevertheless, it’s
crucial to emphasize that the extent of these hybrid approaches’ effectiveness in stabilizing
and improving the performance of Power-mean PUCT under conditions of high node and
simulation counts has not been conclusively determined.

0 500 1000 1500 2000 2500 3000
Number of Nodes

−80

−60

−40

−20

0

20

40

60

80

100

R
el

at
iv

e
E

lo

p=1.5
p=2.2
p=3
p=4
p=5
p=6
p=7

(a) Elo development of Power-mean Back-
propagation with different p in Chess.

0 500 1000 1500 2000 2500 3000
Number of Nodes

−80

−60

−40

−20

0

20

40

60

80

100

R
el

at
iv

e
E

lo

p=1.5
p=2.2
p=3
p=4
p=5
p=6
p=7

(b) Elo development of Power-mean Back-
propagation with different p in Crazy-
house.

Figure 5.4.: Elo development of Power-mean Backpropagation in Chess and Crazyhouse
with p ∈ {1.5, 2.2, 3, 4, 5, 6, 7}. Power-mean PUCT is outperformed when the
number of nodes is low for p ∈ {4, 5, 6} in both domains. In the Chess do-
main, Elo ratings decline from 800 nodes, while in Crazyhouse, Power-mean
Backpropagation performs well up to 2400 nodes but gradually decreases
from 3200.

32

100 200 300 400 500 600 700 800
Number of Visits to switch

−80

−60

−40

−20

0

20

40

R
el

at
iv

e
E

lo

power_mean

(a) p=4 for tournaments with 2400
nodes in Chess.

400 500 600 700 800 900 1000 1100
Number of Visits to switch

−80

−60

−40

−20

0

20

40

R
el

at
iv

e
E

lo

power_mean

(b) p=4 for tournaments with 3200
nodes in Crazyhouse.

100 200 300 400 500 600 700 800
Number of Visits to switch

−80

−60

−40

−20

0

20

40

R
el

at
iv

e
E

lo

power_mean

(c) p=5 for tournaments with 2400
nodes in Chess.

400 500 600 700 800 900 1000 1100
Number of Visits to switch

−80

−60

−40

−20

0

20

40

R
el

at
iv

e
E

lo

power_mean

(d) p=5 for tournaments with 3200
nodes in Crazyhouse.

100 200 300 400 500 600 700 800
Number of Visits to switch

−80

−60

−40

−20

0

20

40

R
el

at
iv

e
E

lo

power_mean

(e) p=6 for tournaments with 2400
nodes in Chess.

400 500 600 700 800 900 1000 1100
Number of Visits to switch

−80

−60

−40

−20

0

20

40

R
el

at
iv

e
E

lo

power_mean

(f) p=6 for tournaments with 3200
nodes in Crazyhouse.

Figure 5.5.: Elo comparison of the hybrid approach combining Power-mean Backprop-
agation with Mean Backpropagation for different visit numbers to switch
in Chess and Crazyhouse. While the new hybrid approach displays slight
effectiveness, the standard MCTS still outperforms it.

33

600 800 1000 1200 1400
Number of Visits to switch

−100

−80

−60

−40

−20

0

20

40

60

R
el

at
iv

e
E

lo

power_mean

(a) p=4 for tournaments with 2400
nodes in Chess.

800 1000 1200 1400 1600 1800
Number of Visits to switch

−100

−80

−60

−40

−20

0

20

40

60

R
el

at
iv

e
E

lo

power_mean

(b) p=4 for tournaments with 3200
nodes in Crazyhouse.

600 800 1000 1200 1400
Number of Visits to switch

−100

−80

−60

−40

−20

0

20

40

60

R
el

at
iv

e
E

lo

power_mean

(c) p=5 for tournaments with 2400
nodes in Chess.

800 1000 1200 1400 1600 1800
Number of Visits to switch

−100

−80

−60

−40

−20

0

20

40

60

R
el

at
iv

e
E

lo

power_mean

(d) p=5 for tournaments with 3200
nodes in Crazyhouse.

600 800 1000 1200 1400
Number of Visits to switch

−100

−80

−60

−40

−20

0

20

40

60

R
el

at
iv

e
E

lo

power_mean

(e) p=6 for tournaments with 2400
nodes in Chess.

800 1000 1200 1400 1600 1800
Number of Visits to switch

−100

−80

−60

−40

−20

0

20

40

60

R
el

at
iv

e
E

lo

power_mean

(f) p=6 for tournaments with 3200
nodes in Crazyhouse.

Figure 5.6.: Elo comparison of the hybrid approach combining Power-mean Backprop-
agation with Max Backpropagation for each number of visits to switch in
Chess and Crazyhouse. The new hybrid approach shows slight effectiveness.

34

5.4. MCTS with Informed Cutoffs (MCTS-IC)

The initial focus is evaluating the effectiveness of MCTS-IC by incorporating neural network
evaluation for Minimax Search. Due to the extensive resources and time required by neural
network evaluation, a particular configuration was exclusively considered, encompassing
100 Nodes, Batch Size=1, and Threads=1. Furthermore, Minimax-Search-Depth=1
(d = 1) is assessed through a 1000-round tournament, while for Minimax-Search-Depth=2
(d = 2), the evaluation is constrained to a 300-round tournament due to time constraints
and the related high cost. Table 5.1 provides the Elo Ratings corresponding to each setup.
The findings reveal that MCTS-IC demonstrates efficacy in Chess and Crazyhouse when
utilizing neural network evaluation, particularly as the minimax search depth is increased,
resulting in a more robust performance. However, this approach is hindered by limitations
in terms of time constraints and environmental factors.

Nodes Rounds d Chess Crazyhouse

100 1000 1 21.9 ± 18.6 38.7 ± 21.4
300 2 83.0 ± 35.4 123.4 ± 41.5

Table 5.1.: The Elo Ratings of MCTS-IC with neural network evaluation, Batch-size=1,
Threads=1 in Chess and Crazyhouse. Despite its high cost, MCTS-IC with
neural network evaluation shows outstanding performance.

The neural network evaluation was replaced with Stockfish’s evaluation to determine
outcome differences. Tests were conducted using d ∈ {0, 1, 2}, ranging from 100 to 400
nodes and containing 1000 Tournaments, leveraging Stockfish’s quick search speed and
efficient pruning mechanisms. The results of MCTS-IC with Stockfish Evaluation in Chess
and Crazyhouse are presented in Table 5.2. The findings indicate that Stockfish evaluation
yields comparatively weaker results than deep neural network evaluation. Nonetheless,
it is noticeable that as the Minimax-Search-Depth (d) increases, MCTS-IC’s effectiveness
becomes more pronounced.

35

d
Nodes

Chess Crazyhouse
100 200 400 100 200 400

0 -490.7 ±
44.8

-600.9 ±
63.7

-816.7 ±
119.3

-629.4 ±
70.2

-816.7 ±
135.5

-1199.8 ±
nan

1 -598.0 ±
56.7

-739.1 ±
99.0

-958.5 ±
269.4

-515.2 ±
51.0

-659.2 ±
75.8

-636.4 ±
71.7

2 -365.0 ±
32.7

-469.0 ±
43.3

-659.2 ±
74.7

-495.7 ±
48.3

-539.0 ±
54.5

-616.2 ±
68.2

Table 5.2.: The Elo Ratings of MCTS-IC with Stockfish’s evaluation in Chess and Crazy-
house. The standard MCTS outperforms MCTS-IC with Stockfish’s evaluation.

5.5. MCTS with Informed Priors (MCTS-IP)

Because of the computational costs linked to deep neural network evaluation and the
inclusion of hyperparameters in the MCTS-IP-M approach, the decision was made to skip
the testing of MCTS-IP-M with deep neural network evaluation. Instead, the evaluation
focused only on MCTS-IP-M with Stockfish’s Evaluation. Initially, the MCTS-IP-M assess-
ment used varying numbers of nodes (n) to trigger Minimax-Search during the Selection
Phase. Figure 5.7 illustrates the Elo development for n ∈ {10, 100, 200}, maintaining a
prior weight of 10 (γ = 10). The outcomes underscore the more consistent performance
of MCTS-IP-M when n = 100 in Chess and n = 200 in Crazyhouse, compared to other n
values.

Subsequently, n = 100 was chosen to evaluate MCTS-IP-M, exploring various prior weight
(γ) settings within the set 10, 20, 30. Figure 5.8 shows the performances of MCTS-IP-M
with different prior weights. It becomes evident that γ = 10 yields favorable performance
in Chess, while in Crazyhouse, γ = 20 stands out.

As observed from the results of MCTS-IC, Stockfish’s evaluation is not as robust as deep
neural network evaluation. Consequently, determining the effectiveness of MCTS-IP-M
remains challenging due to the limitations of Stockfish’s evaluation.

36

500 1000 1500 2000 2500 3000
Number of Nodes

−200

−150

−100

−50

0

50

R
el

at
iv

e
E

lo

n=10
n=100
n=200

(a) MCTS-IP-M in Chess.

500 1000 1500 2000 2500 3000
Number of Nodes

−200

−150

−100

−50

0

50

R
el

at
iv

e
E

lo

n=10
n=100
n=200

(b) MCTS-IP-M in Crazyhouse.

Figure 5.7.: Elo development of MCTS-IP-M using Stockfish’ evaluation with γ = 10 and
n ∈ {10, 100, 200} in Chess and Crazyhouse.

500 1000 1500 2000 2500 3000
Number of Nodes

−60

−40

−20

0

20

40

R
el

at
iv

e
E

lo

prior_weight=10
prior_weight=20
prior_weight=30

(a) MCTS-IP-M in Chess.

500 1000 1500 2000 2500 3000
Number of Nodes

−60

−40

−20

0

20

40

R
el

at
iv

e
E

lo

prior_weight=10
prior_weight=20
prior_weight=30

(b) MCTS-IP-M in Crazyhouse.

Figure 5.8.: Elo development of MCTS-IP-M using Stockfish’ evaluation with γ ∈
{10, 20, 30} and n = 100 in Chess and Crazyhouse.

37

6. Conclusion and Future Work

The five proposed approaches were reconstructed and refined within the Alphazero
framework, and an evaluation based on the number of nodes was carried out in the
domains of Chess and Crazyhouse. The findings of this thesis provide valuable insights into
the strengths and limitations of the adapted techniques and their impact on AlphaZero’s
overall gameplay. Our analysis still has valuable findings despite the absence of a standout
approach that consistently outperforms the standard MCTS across varying node counts
and time control settings.
Firstly, the various Backpropagation techniques illuminate vulnerabilities in the standard
MCTS at lower node counts while highlighting its strength as node count increases. Firstly,
the various Backpropagation techniques illuminate vulnerabilities in the standard MCTS
at lower node counts while highlighting its strength as node count increases. The Implicit
Minimax Backups technique stands out due to its ease of use and excellent performance
in a domain that requires only a few nodes. Similarly, the Power-mean PUCT works well
in situations illustrated by low node counts, outperforming Implicit Minimax Backups due
to a higher node count.
Finally, combining minimax search pruning within MCTS through the MCTS-IC approach
with neural network evaluation emphasizes a substantial impact onMCTS, disregarding the
associated cost and runtime considerations. While the MCTS-IC approach with Stockfish’s
evaluation or the MCTS-IP approach with Stockfish’s evaluations exhibits terrible outcomes,
they highlight its fast evaluation capabilities and ability to integrate with MCTS.
For future work, there is potential for applying Implicit Minimax Backups and Power-
Mean PUCT to domains with limited node requirements, like Pommerman. Moreover,
the Power-mean PUCT shows promising outcomes when carefully analyzed to address
value calculations in the negative range. Lastly, leveraging Stockfish’s rapid evaluation
can be employed during the selection phase. After several visits, a limited-depth minimax
search will be incorporated to ascertain the optimal move. This approach enables quick
identification of blind spots in Monte Carlo Tree Search (MCTS), substantially reducing
the cases of missing or undervaluing critical moves.

38

A. Appendices

Domain Nodes
100 200 400 800 1600

Chess 40.1 ± 20.5 -10.4 ±
20.2

-129.7 ±
20.4

-217.9 ±
21.5

-249.1 ±
21.1

Crazyhouse -10.8 ±
21.4

-74.1 ±
21.8

-168.4 ±
23.7

-212.9 ±
25.1

-272.4 ±
27.8

Table A.1.: The Comparison of the Elo development concerning the count of MCTS nodes
between Chess and Crazyhouse while retaining maximum values instead of
transitioning from mean values to maximum values.

n
Nodes

1500 1800 2400 3000 3600
700 -8.0 ± 17.6 -34.9 ± 17.5 -34.9 ± 16.3 -63.6 ± 16.0 -88.4 ± 16.4
800 0.7 ± 17.6 -9.7 ± 17.7 -37.7 ± 16.5 -60.4 ± 16.5 -73.0 ± 15.9
900 -5.2 ± 18.0 10.8 ± 17.7 -12.5 ± 16.9 -45.8 ± 16.1 -65.4 ± 15.6
1000 -6.9 ± 18.0 -4.9 ± 17.2 -31.0 ± 16.8 -27.2 ± 16.0 -50.0 ± 15.9
1100 6.9 ± 18.0 0.3 ± 18.1 -7.3 ± 16.7 -24.4 ± 16.4 -42.6 ± 15.5

Table A.2.: Elo development of Max Backpropagation for different numbers of visits(n)
to switch from mean value to maximum value in Chess.

39

n
Nodes

1500 1800 2400 3000 3600
700 -2.1 ± 21.2 -6.6 ± 21.2 -34.9 ± 21.2 -24.7 ± 21.2 -73.0 ± 21.6
800 -8.7 ± 21.2 -15.3 ± 21.2 -5.9 ± 21.1 -33.5 ± 21.2 -66.8 ± 21.5
900 -16.3 ± 21.3 -12.2 ± 21.3 -11.5 ± 21.1 -18.1 ± 21.1 -41.5 ± 21.3
1000 5.6 ± 21.1 -3.8 ± 21.2 -8.0 ± 21.2 -31.4 ± 21.0 -38.4 ± 21.2
1100 15.3 ± 21.2 -8.7 ± 21.3 6.6 ± 21.0 -6.9 ± 21.1 -20.2 ± 21.0

Table A.3.: Elo development of Max Backpropagation for different numbers of visits(n)
to switch from mean value to maximum value in Crazyhouse.

α
Nodes

100 200 400 800 1600
0.1 -16.7 ± 21.0 6.3 ± 20.7 1.0 ± 19.4 1.0 ± 19.0 -22.6 ± 17.6
0.2 -12.9 ± 20.7 -17.7 ± 19.6 -11.8 ± 19.5 11.1 ± 18.6 -15.3 ± 17.6
0.3 31.7 ± 20.8 47.5 ± 20.9 -15.3 ± 19.6 -11.8 ± 18.4 -34.5 ± 17.8
0.5 59.6 ± 20.7 56.1 ± 20.9 9.7 ± 19.4 4.5 ± 18.5 -35.9 ± 17.3
0.6 54.3 ± 20.8 63.6 ± 21.0 9.4 ± 19.4 -21.9 ± 18.4 -70.1 ± 17.5
0.7 71.9 ± 20.9 49.0 ± 20.1 -1.4 ± 19.3 -41.5 ± 18.2 -89.1 ± 17.0
0.8 71.9 ± 20.7 55.7 ± 20.8 -12.5 ± 18.7 -81.0 ± 18.3 -117.2 ± 17.7
0.9 46.1 ± 20.6 62.9 ± 20.7 -60.0 ± 19.8 -130.5 ± 19.1 -164.1 ± 18.8

Table A.4.: Elo development of Implicit-Minimax-Backups for different minimax weight(α)
in Chess.

40

α
Nodes

100 200 400 800 1600
0.1 -7.3 ± 21.4 7.6 ± 21.4 0.0 ± 21.3 -22.6 ± 21.3 -11.5 ± 21.3
0.2 -19.5 ± 21.5 16.7 ± 21.4 -2.8 ± 21.2 -3.8 ± 21.3 -11.1 ± 21.2
0.3 6.3 ± 21.4 10.8 ± 21.4 8.7 ± 21.2 -8.7 ± 21.3 -8.3 ± 21.1
0.4 26.5 ± 21.5 15.6 ± 21.4 13.6 ± 21.3 4.9 ± 21.3 -8.3 ± 21.1
0.5 39.1 ± 21.5 37.0 ± 21.4 13.9 ± 21.3 13.2 ± 21.2 3.8 ± 21.1
0.6 44.7 ± 21.5 37.3 ± 21.4 35.2 ± 21.5 5.6 ± 21.1 -6.3 ± 21.0
0.7 35.6 ± 21.5 48.3 ± 21.5 28.2 ± 21.3 5.9 ± 21.1 -30.3 ± 21.3
0.8 34.5 ± 21.5 17.4 ± 21.4 19.8 ± 21.1 -30.7 ± 21.3 -58.6 ± 21.3
0.9 23.0 ± 21.4 11.8 ± 21.4 -52.5 ± 21.4 -92.5 ± 21.7 -125.4 ± 22.5

Table A.5.: Elo development of Implicit-Minimax-Backups for different minimax weight(α)
in Crazyhouse.

p
Nodes

100 200 400 800 1600 2400 3200
1.5 -18.8 ±

20.9
-13.9 ±
20.1

-18.8 ±
19.2

-32.4 ±
17.6

-38.7 ±
16.3

-31.4 ±
15.3

-51.1 ±
14.7

2.2 26.8 ±
20.8

19.5 ±
20.0

2.4 ±
18.9

-13.6 ±
17.1

-34.5 ±
16.5

-32.4 ±
15.2

-41.2 ±
15.3

3 22.3 ±
20.7

31.7 ±
20.1

35.6 ±
18.7

9.7 ±
18.0

-19.8 ±
16.6

-30.7 ±
15.5

-43.3 ±
14.9

4 43.3 ±
20.6

42.2 ±
19.9

25.1 ±
19.1

5.9 ±
17.6

-16.3 ±
16.3

-38.0 ±
15.4

-37.0 ±
14.9

5 50.4 ±
20.7

40.5 ±
20.1

30.7 ±
19.0

6.3 ±
17.5

-17.7 ±
16.1

-31.4 ±
14.8

-28.9 ±
15.2

6 63.6 ±
20.8

38.7 ±
19.9

36.3 ±
18.8

8.3 ±
17.3

-29.3 ±
15.9

-30.7 ±
15.4

-39.8 ±
14.5

7 50.4 ±
20.8

39.4 ±
20.1

36.3 ±
19.0

15.3 ±
17.3

-34.2 ±
16.3

-51.1 ±
15.7

-44.4 ±
14.8

Table A.6.: Elo development of Power-Mean-Backpropagation for different power-
mean(p) in Chess.

41

p
Nodes

100 200 400 800 1600 2400 3200
1.5 17.4 ±

21.4
19.1 ±
21.4

7.3 ±
21.3

28.6 ±
21.2

0.3 ±
21.1

-1.0 ±
21.0

1.7 ±
20.9

2.2 23.3 ±
21.5

39.1 ±
21.5

48.6 ±
21.5

23.7 ±
21.1

24.7 ±
21.2

9.7 ±
20.9

-1.4 ±
20.9

3 34.2 ±
21.5

56.4 ±
21.5

34.9 ±
21.3

22.6 ±
21.1

12.9 ±
21.0

18.4 ±
20.9

3.8 ±
20.9

4 31.0 ±
21.5

64.7 ±
21.7

42.6 ±
21.5

31.4 ±
21.2

23.3 ±
21.0

17.0 ±
21.0

13.6 ±
20.9

5 32.1 ±
21.5

30.0 ±
21.4

53.2 ±
21.6

31.0 ±
21.2

43.3 ±
21.1

9.7 ±
21.0

-5.2 ±
21.0

6 46.5 ±
21.6

37.7 ±
21.4

70.1 ±
21.7

27.5 ±
21.2

15.3 ±
21.1

14.6 ±
21.0

-6.3 ±
21.0

7 40.5 ±
21.5

27.2 ±
21.5

34.5 ±
21.3

10.8 ±
21.2

14.6 ±
21.1

-2.4 ±
20.9

-20.2 ±
20.9

Table A.7.: Elo development of Power-Mean-Backpropagation for different power-
mean(p) in Crazyhouse.

Switching number p = 4 p = 5 p = 6

100 16.3 ± 17.1 -16.3 ± 17.1 -23.3 ± 17.0
200 -16.0 ± 16.6 -17.4 ± 17.0 -13.2 ± 16.6
300 3.1 ± 16.4 -31.7 ± 16.5 -18.4 ± 16.8
400 -17.0 ± 16.4 -9.7 ± 16.2 -25.8 ± 16.2
500 -25.1 ± 15.6 -29.3 ± 16.3 -32.4 ± 16.0
600 -19.8 ± 15.8 -41.5 ± 15.9 -32.8 ± 16.2
700 -28.6 ± 15.4 -45.8 ± 15.9 -46.5 ± 15.7
800 -21.9 ± 15.6 -33.5 ± 15.8 -35.2 ± 15.5

Table A.8.: Elo comparison of the hybrid approach combining Power-mean backpropaga-
tion with mean backpropagation for each number of visits to switch in Chess
with 2400 nodes.

42

Switching number p = 4 p = 5 p = 6

400 2.4 ± 21.1 -1.0 ± 21.0 -16.0 ± 20.9
500 -11.1 ± 20.8 9.4 ± 21.0 -18.1 ± 20.9
600 -8.3 ± 21.0 -8.7 ± 21.0 -9.7 ± 21.0
700 1.7 ± 21.1 -2.8 ± 21.0 -18.8 ± 20.9
800 7.6 ± 21.0 -9.4 ± 21.0 -25.1 ± 21.0
900 4.2 ± 21.0 -2.4 ± 20.8 -25.1 ± 21.0
1000 -6.3 ± 20.9 -6.3 ± 21.0 -27.9 ± 21.0
1100 -31.7 ± 21.1 -6.9 ± 20.9 -13.2 ± 20.9

Table A.9.: Elo comparison of the hybrid approach combining Power-mean backpropaga-
tion with mean backpropagation for each number of visits to switch in Chess
with 3200 nodes.

Switching number p = 4 p = 5 p = 6

600 -42.6 ± 16.0 -62.2 ± 16.4 -57.1 ± 16.8
700 -39.1 ± 16.3 -38.7 ± 15.9 -87.6 ± 16.2
800 -32.4 ± 16.5 -24.0 ± 16.6 -60.7 ± 16.0
900 -37.0 ± 16.6 -49.3 ± 16.3 -40.5 ± 16.5
1000 -6.6 ± 16.4 -23.3 ± 16.2 -25.8 ± 16.3
1100 -21.6 ± 16.5 2.8 ± 16.8 -24.7 ± 16.4
1200 -12.5 ± 16.3 -19.8 ± 16.0 -24.7 ± 15.9
1300 -8.7 ± 16.0 -13.6 ± 16.3 -10.4 ± 16.0
1400 -18.1 ± 16.1 -8.3 ± 16.2 -24.7 ± 16.2

Table A.10.: Elo comparison of the hybrid approach combining Power-mean backprop-
agation with max backpropagation for each number of visits to switch in
Chess with 2400 nodes.

43

Switching number p = 4 p = 5 p = 6

800 -17.4 ± 21.2 -11.8 ± 21.1 -28.2 ± 21.2
900 -18.8 ± 21.1 -8.0 ± 21.2 0.3 ± 21.0
1000 1.0 ± 21.1 2.8 ± 21.1 -23.7 ± 21.1
1100 12.9 ± 21.1 6.3 ± 21.0 -0.7 ± 21.1
1200 6.6 ± 21.0 6.3 ± 21.0 -4.5 ± 21.1
1300 9.7 ± 21.0 1.7 ± 21.0 9.4 ± 21.2
1400 34.9 ± 21.2 0.3 ± 21.2 8.7 ± 21.1
1500 16.0 ± 21.0 2.8 ± 21.1 -7.3 ± 21.0
1600 25.8 ± 21.1 19.1 ± 21.1 -8.3 ± 21.0
1700 16.0 ± 21.0 6.9 ± 21.0 9.7 ± 21.0
1800 -1.4 ± 21.1 -1.7 ± 21.1 -8.7 ± 20.9

Table A.11.: Elo comparison of the hybrid approach combining Power-mean backprop-
agation with max backpropagation for each number of visits to switch in
Crazyhouse with 3200 nodes.

n
Nodes

200 400 800 1600 3200
10 -33.5 ± 20.9 -199.8 ±

24.2
-128.6 ±
21.2

-71.5 ± 18.2 -53.9 ± 16.7

100 -1.0 ± 20.4 15.6 ± 19.7 -7.6 ± 18.9 11.1 ± 18.0 -4.5 ± 16.9
200 -2.4 ± 20.5 -88.4 ± 21.3 -85.4 ± 20.2 -17.7 ± 17.7 5.9 ± 16.4

Table A.12.: MCTS-IP-M with a different number of visits(n) in Chess.

n
Nodes

200 400 800 1600 3200
10 -46.1 ± 21.6 -43.7 ± 21.6 -61.4 ± 21.7 -47.5 ± 21.4 -45.4 ± 21.3
100 6.3 ± 21.3 0.3 ± 21.4 -4.9 ± 21.2 -7.3 ± 21.2 -13.6 ± 21.2
200 3.1 ± 21.4 13.6 ± 21.4 2.8 ± 21.2 -11.5 ± 21.2 -4.2 ± 21.1

Table A.13.: MCTS-IP-M with a different number of visits(n) in Crazyhouse.

44

γ
Nodes

200 400 800 1600 3200
10 -1.0 ± 20.4 15.6 ± 19.7 -7.6 ± 18.9 11.1 ± 18.0 -4.5 ± 16.9
20 -10.8 ± 20.6 -0.3 ± 19.7 -7.6 ± 19.6 0.7 ± 18.0 -0.7 ± 16.4
30 -0.3 ± 20.5 3.8 ± 19.7 -17.0 ± 19.3 -9.4 ± 18.0 -26.8 ± 16.6

Table A.14.: MCTS-IP-M with different prior weights(γ) in Chess.

γ
Nodes

200 400 800 1600 3200
10 6.3 ± 21.3 0.3 ± 21.4 -4.9 ± 21.2 -7.3 ± 21.2 -13.6 ± 21.2
20 20.2 ± 21.4 8.3 ± 21.3 8.7 ± 21.3 0.7 ± 21.2 -4.9 ± 21.2
30 -15.3 ± 21.5 -6.6 ± 21.3 -15.3 ± 21.3 -8.0 ± 21.3 -21.6 ± 21.1

Table A.15.: MCTS-IP-M with different prior weights(γ) in Crazyhouse.

45

Bibliography

[1] G. M. Baudet, “An analysis of the full alpha-beta pruning algorithm”, in Proceedings
of the Tenth Annual ACM Symposium on Theory of Computing, ser. STOC ’78, San
Diego, California, USA: Association for Computing Machinery, 1978, pp. 296–313,
isbn: 9781450374378. doi: 10.1145/800133.804359. [Online]. Available:
https://doi.org/10.1145/800133.804359.

[2] R. Coulom, “Efficient selectivity and backup operators in monte carlo tree search”,
vol. 4630, May 2006, isbn: 978-3-540-75537-1. doi: 10.1007/978-3-540-
75538-8_7.

[3] D. Silver, T. Hubert, J. Schrittwieser, et al.,Mastering chess and shogi by self-play with
a general reinforcement learning algorithm, 2017. arXiv: 1712.01815 [cs.AI].

[4] S. D. Holcomb, W. K. Porter, S. V. Ault, G. Mao, and J. Wang, “Overview on deepmind
and its alphago zero ai”, in Proceedings of the 2018 international conference on big
data and education, 2018, pp. 67–71.

[5] “Alphago”, [Online]. Available: https://www.deepmind.com/research/
highlighted-research/alphago.

[6] C. B. Browne, E. Powley, D. Whitehouse, et al., “A survey of monte carlo tree search
methods”, IEEE Transactions on Computational Intelligence and AI in Games, vol. 4,
no. 1, pp. 1–43, 2012. doi: 10.1109/TCIAIG.2012.2186810.

[7] L. Kocsis and C. Szepesvári, “Bandit based monte carlo planning”, inMachine Learn-
ing: ECML 2006: 17th European Conference on Machine Learning Berlin, Germany,
September 18-22, 2006 Proceedings 17, Springer, 2006, pp. 282–293.

[8] R. Coulom, “Efficient selectivity and backup operators in monte carlo tree search”,
in International conference on computers and games, Springer, 2006, pp. 72–83.

[9] S. Gelly, L. Kocsis, M. Schoenauer, et al., “The grand challenge of computer go:
Monte carlo tree search and extensions”, Communications of the ACM, vol. 55, no. 3,
pp. 106–113, 2012.

46

https://doi.org/10.1145/800133.804359
https://doi.org/10.1145/800133.804359
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/978-3-540-75538-8_7
https://arxiv.org/abs/1712.01815
https://www.deepmind.com/research/highlighted-research/alphago
https://www.deepmind.com/research/highlighted-research/alphago
https://doi.org/10.1109/TCIAIG.2012.2186810

[10] A. Junghanns, “Are there practical alternatives to alpha-beta?”, ICGA Journal,
vol. 21, no. 1, pp. 14–32, 1998.

[11] D. Silver, A. Huang, C. Maddison, et al., “Mastering the game of go with deep
neural networks and tree search”, Nature, vol. 529, pp. 484–489, Jan. 2016. doi:
10.1038/nature16961.

[12] D. E. Knuth and R. W. Moore, “An analysis of alpha-beta pruning”, Artificial intelli-
gence, vol. 6, no. 4, pp. 293–326, 1975.

[13] R. Ramanujan, A. Sabharwal, and B. Selman, “On adversarial search spaces and
sampling-based planning”, in Proceedings of the International Conference on Auto-
mated Planning and Scheduling, vol. 20, 2010, pp. 242–245.

[14] H. Baier and M. H. Winands, “Mcts-minimax hybrids”, IEEE Transactions on Com-
putational Intelligence and AI in Games, vol. 7, no. 2, pp. 167–179, 2014.

[15] T. Dam, P. Klink, C. D’Eramo, J. Peters, and J. Pajarinen, “Generalized mean esti-
mation in monte carlo tree search”, arXiv preprint arXiv:1911.00384, 2019.

[16] R. Coulom, “Efficient selectivity and backup operators in monte carlo tree search”,
vol. 4630, May 2006, isbn: 978-3-540-75537-1. doi: 10.1007/978-3-540-
75538-8_7.

[17] M. Lanctot, M. H. Winands, T. Pepels, and N. R. Sturtevant, “Monte carlo tree
search with heuristic evaluations using implicit minimax backups”, in 2014 IEEE
Conference on Computational Intelligence and Games, IEEE, 2014, pp. 1–8.

[18] P. Khandelwal, E. Liebman, S. Niekum, and P. Stone, “On the analysis of complex
backup strategies in monte carlo tree search”, in Proceedings of the 33rd Interna-
tional Conference on International Conference on Machine Learning - Volume 48,
ser. ICML’16, New York, NY, USA: JMLR.org, 2016, pp. 1319–1328.

[19] M. H. Winands, Y. Björnsson, and J.-T. Saito, “Monte carlo tree search solver”,
in Computers and Games: 6th International Conference, CG 2008, Beijing, China,
September 29-October 1, 2008. Proceedings 6, Springer, 2008, pp. 25–36.

[20] J. Czech, P. Korus, and K. Kersting, “Monte carlo graph search for alphazero”, arXiv
preprint arXiv:2012.11045, 2020.

[21] G. Chaslot, M. Winands, H. Herik, J. Uiterwijk, and B. Bouzy, “Progressive strategies
for monte carlo tree search”, New Mathematics and Natural Computation, vol. 04,
pp. 343–357, Nov. 2008. doi: 10.1142/S1793005708001094.

[22] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed
bandit problem”, Machine learning, vol. 47, pp. 235–256, 2002.

47

https://doi.org/10.1038/nature16961
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1142/S1793005708001094

[23] D. S. Mitrinovic and P. M. Vasic, Analytic inequalities. Springer, 1970, vol. 1.
[24] Z. Feldman and C. Domshlak, “Monte carlo planning: Theoretically fast conver-

gence meets practical efficiency”, in Proceedings of the Twenty-Ninth Conference on
Uncertainty in Artificial Intelligence, ser. UAI’13, Bellevue, WA: AUAI Press, 2013,
pp. 212–221.

[25] T. Keller and M. Helmert, “Trial-based heuristic tree search for finite horizon
mdps”, in Proceedings of the Twenty-Third International Conference on International
Conference on Automated Planning and Scheduling, ser. ICAPS’13, Rome, Italy: AAAI
Press, 2013, pp. 135–143.

[26] Wikipedia contributors, Kalah — Wikipedia, the free encyclopedia, [Online; accessed
8-August-2023], 2023. [Online]. Available: https://en.wikipedia.org/w/
index.php?title=Kalah&oldid=1165974452.

[27] R. Lorentz and T. Horey, “Programming breakthrough”, in Computers and Games:
8th International Conference, CG 2013, Yokohama, Japan, August 13-15, 2013,
Revised Selected Papers 8, Springer, 2014, pp. 49–59.

[28] M. H. Winands, Y. Bjornsson, and J.-T. Saito, “Monte carlo tree search in lines of
action”, IEEE Transactions on Computational Intelligence and AI in Games, vol. 2,
no. 4, pp. 239–250, 2010.

[29] Wikipedia contributors, Connect four — Wikipedia, the free encyclopedia, https:
//en.wikipedia.org/w/index.php?title=Connect_Four&oldid=
1166817902, [Online; accessed 8-August-2023], 2023.

[30] Wikipedia contributors, Dōbutsu shōgi — Wikipedia, the free encyclopedia, [Online;
accessed 8-August-2023], 2023. [Online]. Available: https://en.wikipedia.
org/w/index.php?title=D%C5%8Dbutsu_sh%C5%8Dgi&oldid=
1160813735.

[31] Wikipedia contributors, Reversi —Wikipedia, the free encyclopedia, [Online; accessed
8-August-2023], 2023. [Online]. Available: https://en.wikipedia.org/w/
index.php?title=Reversi&oldid=1166928788.

[32] H. Baier andM. H.Winands, “Mcts-minimax hybrids with state evaluations”, Journal
of Artificial Intelligence Research, vol. 62, pp. 193–231, 2018.

[33] P. Bullen, “Handbook of means and their inequalities”, Jan. 2014. doi: 10.1007/
978-94-017-0399-4.

[34] M. E. Glickman and A. C. Jones, “Rating the chess rating system”, CHANCE-BERLIN
THEN NEW YORK-, vol. 12, pp. 21–28, 1999.

48

https://en.wikipedia.org/w/index.php?title=Kalah&oldid=1165974452
https://en.wikipedia.org/w/index.php?title=Kalah&oldid=1165974452
https://en.wikipedia.org/w/index.php?title=Connect_Four&oldid=1166817902
https://en.wikipedia.org/w/index.php?title=Connect_Four&oldid=1166817902
https://en.wikipedia.org/w/index.php?title=Connect_Four&oldid=1166817902
https://en.wikipedia.org/w/index.php?title=D%C5%8Dbutsu_sh%C5%8Dgi&oldid=1160813735
https://en.wikipedia.org/w/index.php?title=D%C5%8Dbutsu_sh%C5%8Dgi&oldid=1160813735
https://en.wikipedia.org/w/index.php?title=D%C5%8Dbutsu_sh%C5%8Dgi&oldid=1160813735
https://en.wikipedia.org/w/index.php?title=Reversi&oldid=1166928788
https://en.wikipedia.org/w/index.php?title=Reversi&oldid=1166928788
https://doi.org/10.1007/978-94-017-0399-4
https://doi.org/10.1007/978-94-017-0399-4

	Introduction
	Motivation
	Problem Statement
	Contributions of this Thesis

	Background
	Monte Carlo Tree Search (MCTS)
	Upper Confidence bounds applied to Trees (UCT)
	Virtual loss
	Virtual visits

	Minimax Tree Search
	Power Mean

	Related Works
	MCTS-Minimax Hybrid
	Maximum Backpropagation
	Implicit Minimax Backups
	Power-mean PUCT (Power-mean Backpropagation)
	MCTS with Informed Cutoffs (MCTS-IC)
	MCTS with Informed Priors (MCTS-IP)

	Evaluation and Discussion
	Maximum Backpropagation
	Implicit Minimax Backups
	Power-mean PUCT (Power-mean Backpropagation)
	MCTS with Informed Cutoffs (MCTS-IC)
	MCTS with Informed Priors (MCTS-IP)

	Conclusion and Future Work
	Appendices

