
Characteristic Circuits

Zhongjie Yu
TU Darmstadt

Darmstadt, Germany

Martin Trapp
Aalto University
Espoo, Finland

Kristian Kersting
TU Darmstadt/Hessian.AI/DFKI

Darmstadt, Germany

{yu,kersting}@cs.tu-darmstadt.de, martin.trapp@aalto.fi

Abstract

In many real-world scenarios it is crucial to be able to reliably and efficiently reason
under uncertainty while capturing complex relationships in data. Probabilistic
circuits (PCs), a prominent family of tractable probabilistic models, offer a
remedy to this challenge by composing simple, tractable distributions into a high-
dimensional probability distribution. However, learning PCs on heterogeneous
data is challenging and densities of some parametric distributions are not available
in closed form, limiting their potential use. We introduce characteristic circuits
(CCs), a family of tractable probabilistic models providing a unified formalization
of distributions over heterogeneous data in the spectral domain. The one-to-one
relationship between characteristic functions and probability measures enables
us to learn high-dimensional distributions on heterogeneous data domains and
facilitates efficient probabilistic inference even when no closed-form density func-
tion is available. We show that the structure and parameters of CCs can be learned
efficiently from the data and find that CCs outperform state-of-the-art density
estimators for heterogeneous data domains on common benchmark data sets.

1 Introduction

CF

φ
measures

µ

characteristic circuits

continuous

dists.

discrete

dists.
intractable

probabilistic circuits

unique relationship

integration

Figure 1: Characteristic circuits provide a
unified, tractable specification of joint contin-
uous and discrete distributions in the spectral
domain of probability measures.

Probabilistic circuits (PCs [Choi et al., 2020]) have
gained increasing attention in the machine learning
community as a promising modelling family that ren-
ders many probabilistic inferences tractable with lit-
tle compromise in their expressivity. Their beneficial
properties have prompted many successful applica-
tions in density estimation [e.g., Peharz et al., 2020,
Di Mauro et al., 2021, Dang et al., 2022, Correia et al.,
2023] and in areas where probabilistic reasoning is
key, for example, neuro-symbolic reasoning [Ahmed
et al., 2022], certified fairness [Selvam et al., 2023],
or causality [Zečević et al., 2021]. Moreover, re-
cent works have explored ways of specifying PCs for
more complex modelling scenarios, such as time se-
ries [Trapp et al., 2020, Yu et al., 2021b,a] or tractable
representation of graphs [Wang et al., 2022].

However, while density estimation is at the very core
of many machine learning techniques (e.g., approx-
imate Bayesian inference [Murphy, 2012]) and a fun-
damental tool in statistics to identify characteristics of the data such as kth order moments or
multimodality [Silverman, 2018], even in the case of parametric families, densities are sometimes

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

not available in closed-form. For example, only special cases of α-stable distributions provide
closed-form densities [Nolan, 2013]. Fortunately, there exists a one-to-one correspondence between
probability measures and characteristic functions [Sasvári, 2013], which can be understood as the
Fourier-Stieltjes transform of the probability measures, enabling the characterisation of any probabil-
ity measure through its characteristic function. Henceforth, the characteristic function of probability
measures has found wide applicability in statistics, ranging from its use as a non-parametric estimator
through the empirical characteristic function [Feuerverger and Mureika, 1977] to estimate heavy-
tailed data, e.g., through the family of α-stable distributions [Nolan, 2013]. However, even though
the characteristic function has many beneficial properties, its application to encode high-dimensional
data distributions and efficient computation of densities can be quite challenging [Nolan, 2013].

In this work, we bridge between the characteristic function of probability measures and PCs. We
do so by examining PCs from a more general perspective, similar in spirit to their specifications
as a summation over functions on a commutative semiring [Friesen and Domingos, 2016] or as
a convex combination of product measures on product probability spaces [Trapp et al., 2020].
Instead of defining the circuit over density functions, we propose to form the circuit over the
characteristic function of the respective probability measures, illustrated in Fig. 1. The resulting
characteristic circuits (CCs) are related to recent works, which define a circuit over probability
generating polynomials to represent discrete probability distributions [Zhang et al., 2021], in that both
approaches can be understood as transformation methods. The benefits of using the spectral domain
are manifold: (i) characteristic functions as the base enable a unified view for discrete and continuous
random variables, (ii) directly representing the characteristic function allows to learn distributions
that do not have closed-form expressions for their density, and (iii) the moment can be obtained
efficiently by differentiating the circuit. When modelling heterogeneous data, standard PCs do not
naturally lend themselves to a unified view of mixed data but treat discrete and continuous random
variables (RVs) conceptually differently. The difference arises as PCs model heterogeneous data
domains after integration w.r.t. the base measure which, in case of mixed domains, differs between
discrete and continuous RVs. RVs distributed according to a singular distribution can typically
not be represented in PCs at all. This dependence on the base measure is subtly embedded within
PCs, resulting in challenges when it comes to learning these models in heterogeneous domains. In
contrast, CCs provide a unified view compared to PCs by moving away from the dependence on the
base measure, achieved by representing the distribution through its characteristic function, which is
independent of the base measure.

In summary, our contributions are: (1) We propose characteristic circuits, a novel deep probabilistic
model class representing the joint of discrete and continuous random variables through a unifying
view in the spectral domain. (2) We show that characteristic circuits retain tractability of PCs despite
the change of domain and enable efficient computation of densities, marginals, and conditionals.
(3) We derive parameter and structure learning for characteristic circuits and find that characteristic
circuits outperform SOTA density estimators in the majority of tested benchmarks.1

We proceed as follows. We start off by discussing related work and review preliminaries on prob-
abilistic circuits and characteristic functions. Consequently, we define our model characteristic
circuits, discuss theoretical properties, and show how to learn the circuits parameters and structure.
We conclude by presenting an empirical evaluation and discussion of the new model class.

2 Related Work

Characteristic functions (CFs) were originally proposed as a tool in the study of limit theorems
and afterwards developed with independent mathematical interest [Lukacs, 1972]. The uniqueness
between CFs and probability measures is recovered with Lévy’s inversion theorem [Sasvári, 2013]. A
popular application of the CF is in statistical tests [e.g., Eriksson and Koivunen, 2003, Su and White,
2007, Wang and Hong, 2018, Ke and Yin, 2019]. In practice, the CF of a distribution is in most
cases not easy to estimate, and in turn the empirical characteristic function (ECF) is employed as an
approximation to the CF [Feuerverger and Mureika, 1977]. The ECF has been successfully applied
in sequential data analysis tasks [Knight and Yu, 2002, Yu, 2004, Davis et al., 2021]. When handling
high dimensional data, multivariate CFs and ECFs were proposed for modelling e.g. multivariate
time series [Lee et al., 2022] and images [Ansari et al., 2020]. Although a mass of work has been

1Source code is available at https://github.com/ml-research/CharacteristicCircuits

2

https://github.com/ml-research/CharacteristicCircuits

developed for the applications of CF, less attention has been paid to estimating the model quality of
CF itself. Therefore, modelling the multivariate CF remains to be challenging.

Probabilistic circuits (PCs) are a unifying framework for tractable probabilistic models [Choi
et al., 2020] that recently show their power in e.g. probabilistic density estimation [Dang et al.,
2020, Di Mauro et al., 2021, Zhang et al., 2021], flexible inference [Shao et al., 2022], variational
inference [Shih and Ermon, 2020], and sample generating [Peharz et al., 2020]. When it comes to
data containing both discrete and continuous values, a mixture of discrete and continuous random
variables is employed in PCs. Molina et al. [2018] propose to model mixed data based on the
Sum-Product Network (SPN) structure, casting the randomized dependency coefficient [Lopez-Paz
et al., 2013] for independence test for hybrid domains and piece-wise polynomial as leaf distributions,
resulting in Mixed Sum-Product Networks (MSPN). Furthermore, statistical data type and likelihood
discovery have been made available with Automatic Bayesian Density Analysis (ABDA) [Vergari
et al., 2019], which is a suitable tool for analysis of mixed discrete and continuous tabular data.
Moreover, Bayesian SPNs [Trapp et al., 2019] use a well-principled Bayesian framework for SPN
structure learning, achieving competitive results in density estimation on heterogeneous data sets. The
above-mentioned models try to handle the probability measure with either parametric density/mass
functions or histograms, but yet could not offer a unified view of heterogeneous data. PCs will also
fail to model leaves with distributions that do not have closed-form density expressions.

3 Preliminaries on Probabilistic Circuits and Characteristic Functions

Before introducing characteristic circuits, we recap probabilistic circuits and characteristic functions.

3.1 Probabilistic Circuits (PCs)

PCs are tractable probabilistic models, structured as rooted directed acyclic graphs, where each leaf
node L represents a probability distribution over a univariate RV, each sum node S models a mixture
of its children, and each product node P models a product distribution (assuming independence) of
their children. A PC over a set of RVs X can be viewed as a computational graph G representing a
tractable probability distribution over X , and the value obtained at the root node is the probability
computed by the circuit. We refer to Choi et al. [2020] for more details.

Each node in G is associated with a subset of X called the scope of a node N and is denoted as
ψ(N). The scope of an inner node is the union of the scope of its children. Sum nodes compute a
weighted sum of their children S =

∑
N∈ch(S) wS,NN, and product nodes compute the product of

their children P =
∏

N∈ch(P) N, where ch(·) denotes the children of a node. The weights wS,N are
generally assumed to be non-negative and normalized (sum up to one) at each sum node. We also
assume the PC to be smooth (complete) and decomposable [Darwiche, 2003], where smooth requires
all children of a sum node having the same scope, and decomposable means all children of a product
node having pairwise disjoint scopes.

3.2 Characteristic Functions (CFs)

Characteristic functions provide a unified view for discrete and continuous random variables through
the Fourier–Stieltjes transform of their probability measures. Let X be a d-dimensional random
vector, the CF of X for t ∈ Rd is given as:

φX(t) = E[exp(i t⊤X)] =

∫
x∈Rd

exp(i t⊤ x)µX(dx), (1)

where µX is the distribution/probability measure of X . CFs have certain useful properties. We will
briefly review those that are relevant for the remaining discussion: (i)φX(0) = 1 and |φX(t)| ≤ 1; (ii)
for any two RVs X1, X2, both have the same distribution iff φX1 = φX2 ; (iii) if X has k moments,
then φX is k-times differentiable; and (iv) two RVs X1, X2 are independent iff φX1,X2(s, t) =
φX1(s)φX2(t). We refer to Sasvári [2013] for a more detailed discussion of CFs and their properties.

Theorem 3.1 (Lévy’s inversion theorem [Sasvári, 2013]). Let X be a real-valued random variable,
µX its probability measure, and φX : R → C its characteristic function. Then for any a, b ∈ R,

3

a < b, we have that

lim
T→∞

1

2π

∫ T

−T

exp(−ita)− exp(−itb)

it
φX(t)dt = µX [(a, b)] +

1

2
(µX(a) + µX(b)) (2)

and, hence, φX uniquely determines µX .
Corollary. If

∫
R |φX(t)|dt <∞, then X has a continuous probability density function fx given by

fX(x) =
1

2π

∫
R
exp(−itx)φX(t)dt. (3)

Note that not every probability measure admits an analytical solution to Eq. (3), e.g., only special
cases of the family of α-stable distributions have a closed-form density function [Nolan, 2013], and
numerical integration might be needed.

Empirical Characteristic Function (ECF). In many cases, a parametric form of the data distribution
is not available and one needs to use a non-parametric estimator. The ECF [Feuerverger and Mureika,
1977, Cramér, 1999] is an unbiased and consistent non-parametric estimator of the population
characteristic function. Given data {xj}nj=1 the ECF is given by

φ̂P(t) =
1

n

n∑
j=1

exp(i t⊤ xj). (4)

Evaluation Metric. To measure the distance between two distributions represented by their char-
acteristic functions, the squared characteristic function distance (CFD) can be employed. The CFD
between two distributions P and Q is defined as:

CFD2
ω(P,Q) =

∫
Rd

|φP(t)− φQ(t)|2 ω(t; η)dt, (5)

where ω(t; η) is a weighting function parameterized by η and guarantees the integral in Eq. (5)
converge. When ω(t; η) is a probability density function, Eq. (5) can be rewritten as:

CFD2
ω(P,Q) = Et∼ω(t;η)

[
|φP(t)− φQ(t)|2

]
. (6)

Actually, using the uniqueness theorem of CFs, we have CFDω(P,Q) = 0 iff P = Q [Sriperumbudur
et al., 2010]. Computing Eq. (6) is generally intractable, therefore, we use Monte-Carlo integration
to approximate the expectation, resulting in CFD2

ω(P,Q) ≈ 1
k

∑k
j=1 |φP(tj)− φQ(tj)|2, where

{t1, · · · , tk}
i.i.d.∼ ω(t; η). We refer to Ansari et al. [2020] for a detailed discussion.

4 Characteristic Circuits

Now we have everything at hand to introduce characteristic circuits. We first give a recursive
definition of CC, followed by devising each type of node in a CC. We then show CCs feature efficient
computation of densities, and in the end introduce how to learn a CC from data.
Definition 4.1 (Characteristic Circuit). Let X = {X1, . . . , Xd} be a set of random variables. A
characteristic circuit denoted as C is a tuple consisting of a rooted directed acyclic graph G, a scope
function ψ : V(G) → P(X), parameterized by a set of graph parameters θG . Nodes in G are either
sum (S), product (P), or leaf (L) nodes. With this, a characteristic circuit is defined recursively as
follows:

1. a characteristic function for a scalar random variable is a characteristic circuit.

2. a product of characteristic circuits is a characteristic circuit.

3. a convex combination of characteristic circuits is a characteristic circuit.

Let us now provide some more details. To this end, we denote with φC(t) the output of C computed
at the root of C, which represents the estimation of characteristic function given argument of the
characteristic function t ∈ Rd. Further, we denote the number of RVs in the scope of N as pN :=

4

|ψ(N)| and use φN(t) for the characteristic function of a node. Throughout the paper, we assume the
CC to be smooth and decomposable.

Product Nodes. A product node in a CC encodes the independence of its children. Let X and
Y be two RVs. Following property (iv) of characteristic functions, the characteristic function of
X,Y is given as φX,Y (t, s) = φX(t)φY (s), if and only if X and Y are independent. Therefore, by
definition, the characteristic function of product nodes is given as:

φP(t) =
∏

N∈ch(P)
φN(tψ(N)), (7)

where t =
⋃

N∈ch(P) tψ(N).

Sum Nodes. A sum node in a CC encodes the mixture of its children. Let the parameters of S be
given as

∑
N∈ch(S) wS,N = 1 and wS,N ≥ 0,∀S,N. Then the sum node in a CC is given as: φS(t) =∫

x∈Rd
exp(it⊤x)

[∑
N∈ch(S)

wS,N µN(dx)

]
=

∑
N∈ch(S)

wS,N

∫
x∈RpS

exp(it⊤x)µN(dx)︸ ︷︷ ︸
=φN(t)

. (8)

Leaf Nodes. A leaf node of a CC models the characteristic function of a univariate RV. To handle
various data types, we propose the following variants of leaf nodes.

ECF leaf. The most straightforward way for modelling the leaf node is to directly employ the empirical
characteristic function for the local data at each leaf, defined as φLECF(t) =

1
n

∑n
j=1 exp(i t xj),where

n is the number of instances at the leaf L, and xj is the jth instance. The ECF leaf is non-parametric
and is determined by the n instances xj at the leaf.

Parametric leaf for continuous RVs. Motivated by existing SPN literature, we can assume that the
RV at a leaf node follows a parametric continuous distribution e.g. normal distribution. With this,
the leaf node is equipped with the CF of normal distribution φLNormal(t) = exp(i t µ− 1

2σ
2t2), where

parameters µ and σ2 are the mean and variance.

Parametric leaf for discrete RVs. For discrete RVs, if it is assumed to follow categorical distribution
(P (X = j) = pj), then the CF at the leaf node can be defined as φLCategorical(t) = E[exp(i t x)] =∑k

j=1 pj exp(i t j). Other discrete distributions which are widely used in probabilistic circuits can
also be employed as leaf nodes in CCs, e.g., Bernoulli, Poisson and geometric distributions.

α-stable leaf. In the case of financial data or data distributed with heavy tails, the α-stable
distribution is frequently employed. α-stable distributions are more flexible in modelling e.g.
data with skewed centered distributions. The characteristic function of an α-stable distribu-
tion is φLα-stable(t) = exp(i t µ − |ct|α (1 − iβsgn(t)Φ)), where sgn(t) takes the sign of t and

Φ =
{
tan(πα/2) α ̸= 1
−2/π log |t| α = 1

. The parameters in α-stable distributions are the stability parame-

ter α, the skewness parameter β, the scale parameter c and the location parameter µ. Despite its
modelling power, α-stable distribution is never employed in PCs, as it is represented analytically by
its CF and in most cases does not have a closed-form probability density function.

4.1 Theoretic Properties of Characteristic Circuits

With the CC defined above, we can now derive the densities, marginals and moments from it.

4.1.1 Efficient computation of densities

Through their recursive nature, CCs enable efficient computation of densities in high-dimensional
settings even if the density function is not available in closed form. For this, we present an extension
of Theorem 3.1 for CCs, formulated using the notion of induced trees T [Zhao et al., 2016]. A
detailed definition of induced trees can be found in Appendix A.2.

Lemma 4.2 (Inversion). Let C = ⟨G, ψ, θG⟩ be a characteristic circuit on RVs X = {Xj}dj=1

with univariate leave nodes. If
∫
R |φL(t)|dt < ∞ for every L ∈ V (G), then X has a continuous

5

probability density function fx given by fX(x) =

1

(2π)d

τ∑
i=1

∏
(S,N)∈E(Ti)

wS,N

∏
L∈V(Ti)

∫
R
exp(−itxψ(L))φL(t) dt, (9)

and can be computed efficiently through analytic or numerical integration at the leaves.

Proof. Let C = ⟨G, ψ, θG⟩ be a characteristic circuit on RVs X = {Xj}dj=1 with univariate leave
nodes and pN the number of RVs in the scope of N. In order to calculate the density function of C, we
need to integrate over the d-dimensional real space Rd, i.e.,

fX(x) =
1

(2π)d

∫
t∈Rd

exp(−i t⊤ x)φC(t)λd(dt)︸ ︷︷ ︸
=f̂C(x)

, (10)

where φC(t) denotes the CF defined by the root of the characteristic circuit and λd is the Lebesque
measure on (Rd,B(Rd)). We can examine the computation of Eq. (10) recursively for every node.

Leaf Nodes. If N is a leaf node L, we obtain f̂N(·) by calculating:

f̂L(x) = 2πfL(x) =

∫
R
exp(−itx)φX(t)λ(dt), (11)

which follows from Theorem 3.1.

Sum Nodes. If N is a sum node S, then:

f̂S(x) =

∫
t∈Rp
exp(−i t⊤ x)φS(t)λp(dt) =

∑
N∈ch(S)

wS,N

∫
t∈RpS
exp(−i t⊤ x)φN(t)λpS(dt)︸ ︷︷ ︸

=f̂N(x)

. (12)

Therefore, computing the inverse for S reduces to inversion at its children.

Product Nodes. If N is a product node P, then:

f̂P(x) =

∫
t∈RpP
exp(−i t⊤ x)φP(t)λpP(dt) =

∏
N∈ch(P)

∫
s∈RpN
exp(−i s⊤ x[ψ(N)])φN(s)λpN(ds)︸ ︷︷ ︸

=f̂N(x[ψ(N)])

, (13)

where we used that λpP = ⊗N∈ch(P) λpN is a product measure on a product space, applied Fubini’s
theorem [Fubini, 1907], and used the additivity property of exponential functions. Consequently,
computing the inverse for P reduces to inversion at its children.

Through the recursive application of Eq. (12) and Eq. (13), we obtain that Eq. (10) reduces to
integration at the leaves and, therefore, can be solved either analytically or efficiently through
one-dimensional numerical integration.

4.1.2 Efficient computation of marginals

Similar to PCs over distribution functions, CCs allow efficient computation of arbitrary marginals.
Given a CC on RVs Z = X ∪ Y , we can obtain the marginal CC of X as follows. Let n = |X|,
m = |Y | and let the characteristic function of the circuit be given by

φC(t1, . . . , tn, tn+1, . . . , tn+m) =

∫
z∈Rn+m

exp(it⊤z)µS(dz), (14)

where µS denotes the distribution of the root. Then the marginal CC of X is given by setting tj = 0,
n < j ≤ n+m. The proof of marginal computation is provided in Appendix B.1.

6

4.1.3 Efficiently computing moments via differentiation

Characteristic circuits also allow efficient computation of moments of distributions. Let k ∈ Nd0
be such that the partial derivative ∂k

∂t
k1
1 ···∂t

kd
d

φC(0) exists, then the moment Mk exists and can be

computed efficiently through the derivative at the leaves

Mk = i−|k|
∂k

∂tk11 · · · ∂tkdd
φC(0) = i−|k|

τ∑
i=1

∏
(S,N)∈E(Ti)

wS,N

∏
L∈V(Ti)

dkψ(L)

dtkψ(L)
φL(0). (15)

A detailed proof can be found in Appendix B.2.

4.2 Learning Characteristic Circuits from Data

To learn a characteristic circuit from data there are several options. The first option is parameter
learning using a random circuit structure. The random structure is initialized by recursively creating
mixtures with random weights for sum nodes and randomly splitting the scopes for product nodes.
A leaf node is created with randomly initialized parameters when there is only one scope in a node.
Maximising the likelihood at the root of a CC requires one to apply the inversion theorem to the CC
for each training data. When a leaf node does not have a closed-form density function, numerical
integration could be used to obtain the density value given data, which makes the maximum likelihood
estimation (MLE) at the root not guaranteed to be tractable.

As discussed in prior works, see e.g. Yu [2004], minimising a distance function to the ECF is most
related to moment-matching approaches, but can result in more accurate fitting results. Therefore,
minimising the CFD to the ECF can be beneficial if no tractable form of the likelihood exists but
evaluating the characteristic function is tractable. In this case, instead of maximising the likelihood
from CC, which is not guaranteed to be tractable, we take the ECF from data as an anchor and
minimise the CFD between the CC and ECF:

1

k

∑k

j=1

∣∣∣∣ 1n∑n

i=1
exp(it⊤j xi)− φC(tj)

∣∣∣∣ 2. (16)

Applying Sedrakyan’s inequality [Sedrakyan, 1997] to Eq. (16), parameter learning can be operated
batch-wise:

1

k

k∑
j=1

∣∣∣∣∣1b
b∑
l=1

1

nb

nb∑
i=1

exp(it⊤j xi)− φC(tj)

∣∣∣∣∣ 2 ≤ 1

k

k∑
j=1

1

b

b∑
l=1

∣∣∣∣∣ 1nb
nb∑
i=1

exp(it⊤j xi)− φC(tj)

∣∣∣∣∣ 2,
where b is the number of batches and nb the batch size. This way, parameter learning of CC is
similar to training a neural network. Furthermore, if two CCs are compatible, as per similarly
defined for PCs [Vergari et al., 2021], the CFD between the two CCs can be calculated analytically,
see Appendix D for more details.

Algorithm 1 CC Structure Learning
Input: training dataD, RVs X ,min_k, kS, kP
Output: C
Function buildCF(D,X)

return L← univariate CF φX(t)

Function buildSumNode(D, X)
if |X| = 1 then

S← buildCF(D,X)
else if |D| ≤ min_k then

PartitionD into |X| independent subsetsDj ;
S←

∏|X|
j=1 buildCF(Dj ,Xj) ;

else
PartitionD into kS clustersDi ;

S←
∑kS
i=1

|Di|
|D| buildProdNode(Di, X)

return S

Function buildProdNode(D,X)
PartitionD into kP independent subsetsDj ;

return P←
∏kP
j=1 buildSumNode(Dj , Xj)

C ← buildSumNode(D, X)

Training data

Variables

In
st

an
ce

s

×

φ

recurse

Figure 2: Illustration of the recursive structure
learning algorithm. Sum nodes are results of clus-
tering, having weighted children that are product
nodes. Product nodes are results of independence
test, enforcing independence assumptions of their
children. Leaf nodes are univariate characteristic
functions modelling local data.

7

Table 1: Average test log-likelihoods from CC after parameter learning by minimising the CFD on
synthetic data sets. The CC structure is either generated using Random Structure or learned using the
Structure Learning algorithm.

Data Set Random
Structure

Random Structure
& Parameter Learning

Structure
Learning

Structure Learning
& Parameter Learning

Structure Learning (random w)
& Parameter Learning

MM -4.93 -3.50 -2.87 -2.86 -3.34
BN -6.30 -4.12 -3.27 -3.27 -3.93

However, relying on randomly initialized structures (e.g., due to fixed split of scopes) may also
limit the performance of parameter learning of CC. To overcome this, we derive now a structure
learning algorithm to learn the structure of the CC. Inspired by Gens and Pedro [2013], this structure
learning recursively splits the data slice and creates sum and product nodes of the CC as summarized
in Algorithm 1 and depicted in Fig. 2. To create a sum node S, clustering algorithms, e.g., K-means
clustering, is employed to split data instances in the slice into kS subsets. The weights of the sum
node are then determined by the portion of data instances in each subset. To create a product node P,
some independence tests—e.g., G-test of independence or random dependency coefficient (RDC)
based splitting [Molina et al., 2018]—are used to decide on splitting the random variables in the
data slice into kP sub-groups. The sum and product nodes are created recursively until any of the
following conditions fulfils: (1) There is only one scope in the data slice, and then a leaf node with
the corresponding scope is created. (2) The number of data instances in the data slice is smaller than
a pre-defined threshold min_k. In the latter case, a naive factorization is applied to the scopes in the
data slice to create a product node, and then create leaves for each scope as children for this product
node. When creating a leaf node, the leaf parameters are estimated by MLE if closed-form density
function is available. In the case of ECF leaves, the leaf nodes are created from local data following
the definition of ECF in Eq. (4). When there is no closed-form density at a leaf, the parameters of an
α-stable distribution are estimated using the algorithm in McCulloch [1986].

5 Experimental Evaluation

x1

p(x1 | p1 = [0.3, 0.7])

φ

x2 p(x2 | p2 = [0.8, 0.2])

x3 p(x3 | x1,x2,p3) =

x1 x2 p3

1 1 [1.0, 0.0]
1 2 [0.9, 0.1]
2 1 [0.3, 0.7]
2 2 [0.1, 0.9]

x4

p(x4 | µ4 = x3 + 3, σ2
4 = 1)

x5 p(x5 | x3,p5) =

x3 p5

1 [0.98, 0.02]
2 [0.05, 0.95]

Figure 3: The Bayesian network used for BN.

Our intention here is to evaluate the performance
of characteristic circuit on synthetic data sets
and UCI data sets, consisting of heterogeneous
data. The likelihoods were computed based on
the inversion theorem. For discrete and Gaus-
sian leaves, the likelihoods were computed an-
alytically. While for α-stable leaves, the likeli-
hoods were computed via numerical integration
using Gauss-Hermit quadrature of degree 50.

Can characteristic circuits approximate
known distributions well? We begin by de-
scribing and evaluating the performance of CC
on two synthetic data sets. The first data set consisted of data generated from a mixture of multivariate
distributions (denoted as MM): p(x) =

∑K
i=1 wip(x1 | µi, σ2

i)p(x2 | pi), where p(x | µ, σ2) is the
univariate normal distribution with mean µ and variance σ2, and p(x | p) is the univariate categorical
distribution with p the vector of probability of seeing each element. In our experiments we set K = 2
and w1 = 0.3, w2 = 0.7. For each univariate distribution we set µ1 = 0, σ2

1 = 1, µ2 = 5, σ2
2 = 1,

p1 = [0.6, 0.4, 0.0] and p2 = [0.1, 0.2, 0.7]. The second data set consisted of data generated from a
Bayesian network with 5 nodes (denoted as BN), to test the modelling power of characteristic circuits
with more RVs and more complex correlations among each RV. The details of the BN are depicted
in Fig. 3. Here, X1, X2, X3 and X5 are binary random variables parameterized by pi, and X4 is a
continuous random variable conditioned on X3. For both data sets MM and BN, 800 instances were
generated for training and 800 for test.

We first employed parameter learning and evaluated the log-likelihoods from the random structure
and after parameter learning. A detailed setting of parameter learning is illustrated in Appendix C.1.
The increase of log-likelihoods after parameter learning (columns 2 and 3 in Table 1) implies that

8

−5 0 5
0

0.5

1

·10−3

argmaxη

log(η)

C
FD

−2 0 2 4
0

2

4

6

8
·10−2

argmaxη

log(η)

C
FD

Figure 4: Characteristic circuits approximate the true distributions better than the ECF by providing
a smaller CFD. We visualize the CFD for CC with parametric leaves (CC-P), ECF as leaves
(CC-E), normal distribution as leaves (CC-N) and a single empirical characteristic function
(ECF) learned from synthetic heterogeneous data (Left: MM, Right: BN). Best viewed in color.

minimising the CFD pushes CC to better approximate the true distribution of data. We then learnt CCs
using structure learning with min_k = 100, and kS = kP = 2. Various leaf types were evaluated:
CC with ECF as leaves (CC-E), CC with normal distribution for continuous RVs and categorical
distributions for discrete RVs, i.e., parametric leaves (CC-P), and CC with normal distribution for
all leaf nodes (CC-N). The trained CCs were evaluated with the CFD between the CC and the
ground truth CF. For data set BN, the ground truth CF was derived via the algorithm for generating
arithmetic circuits that compute network polynomials [Darwiche, 2003]. Following Chwialkowski
et al. [2015] and Ansari et al. [2020], we illustrate both the CFD with varying scale η in ω(t; η) and
also optimising η for the largest CFD, shown in Fig. 4. The CFD are averaged over 5 runs, and the
standard deviations are also visualized. It can be seen from Fig. 4 that both CC-E and CC-P have
almost equally lower CFD values and also lower maximum CFD values compared to the ECF, which
indicates the characteristic circuit structure better encodes the data distribution than the ECF. The
smaller standard deviation values from characteristic circuits compared with ECF also imply that
characteristic circuits offer a more stable estimate of the characteristic function from data. For data
set MM, the maximum CFD of CC-N is 0.0270 when log(σ) = 0.6735, which is far more than 0.0006
of CC-P, and thus not visualized in Fig. 4 (Left). This also happens to data set BN, as can be seen
in Fig. 4 (Right) that CC-N gives higher CFD than CC-P and CC-E, which implies that assuming
a discrete RV as normal distributed is not a suitable choice for CC. In addition, parameter learning
on CCs from structure learning and structure learning with randomized parameters (last 2 columns
in Table 1) provides higher log-likelihoods than random structures, which implies a well-initialized
structure improves parameter learning. To conclude, CC estimates the data distribution better than
ECF, which is justified by the smaller CFD from CC-E compared with ECF.

Can characteristic circuits be better density estimators on heterogeneous data? Real-world
tabular data usually contain both discrete and real-valued elements, and thus are in most cases
heterogeneous. Therefore, we also conducted density estimation experiments on real-world hetero-
geneous data sets and compared to state-of-the-art probabilistic circuit methods, including Mixed
SPNs (MSPN) [Molina et al., 2018], Automatic Bayesian Density Analysis (ABDA) [Vergari et al.,
2019] and Bayesian SPNs (BSPN) [Trapp et al., 2019]. We employed the heterogeneous data from
the UCI data sets, see Molina et al. [2018] and Vergari et al. [2019] for more details on the data sets.
Similar to the setup in Trapp et al. [2019], a random variable was treated as categorical if there are
less than 20 unique values of that RV in the training set. All the rest RVs were modelled with either
normal distributions (CC-P) or α-stable distributions (CC-A). Again, we first employed parameter
learning with a (fixed) random structure using α-stable distribution for continuous RVs and report
the log-likelihoods (Parameter Learning in Table 2). Note that α-stable distributions can not be
represented with closed-form densities, thus maximising the likelihood from it can not be solved
exactly and efficiently. As a comparison, structure learning was also employed with min_k = 100,
kS = kP = 2 for G-test based splitting (CC-P & CC-A), and with min_k = 100, kS = 2 for
RDC based splitting (CC-ARDC). A detailed description of the experimental settings can be found
in Appendix C.2. The test log-likelihoods are presented in Table 2. As one can see, parameter
learning performs worse than CC-A but still outperforms some of the baselines. CC-P does not
win on all the data sets but is competitive with MSPN and ABDA on most of the data sets. CC-A
outperforms the baselines on 8 out of 12 data sets, and CC-ARDC outperforms all the other methods

9

Table 2: Average test log-likelihoods from CC and SOTA algorithms on heterogeneous data.

Data Set Parameter
Learning MSPN ABDA BSPN Structure Learning

CC-P CC-A CC-ARDC

Abalone 3.06 9.73 2.22 3.92 4.27 15.10 17.75
Adult -14.47 -44.07 -5.91 -4.62 -31.37 -7.76 -1.43
Australian -5.59 -36.14 -16.44 -21.51 -30.29 -3.26 -2.94
Autism -27.80 -39.20 -27.93 -0.47 -34.71 -17.52 -15.5
Breast -20.39 -28.01 -25.48 -25.02 -54.75 -13.41 -12.36
Chess -13.33 -13.01 -12.30 -11.54 -13.04 -13.04 -12.40
Crx -6.82 -36.26 -12.82 -19.38 -32.63 -4.72 -3.19
Dermatology -45.54 -27.71 -24.98 -23.95 -30.34 -24.92 -23.58
Diabetes -1.49 -31.22 -17.48 -21.21 -23.01 0.63 0.27
German -19.54 -26.05 -25.83 -26.76 -27.29 -15.24 -15.02
Student -33.13 -30.18 -28.73 -29.51 -31.59 -27.92 -26.99
Wine 0.32 -0.13 -10.12 -8.62 -6.92 13.34 13.36
best 0 0 0 2 0 1 9

on 9 out of 12 data sets. This implies that characteristic circuit, especially with structure learning, is a
competitive density estimator compared with SOTA PCs. Actually, α-stable leaf distributions are a
more suitable choice for characteristic circuits on heterogeneous tabular data.

6 Conclusion

We introduced characteristic circuits (CCs), a novel circuit-based characteristic function estimator
that leverages an arithmetic circuit with univariate characteristic function leaves for modelling the
joint of heterogeneous data distributions. Compared to existing PCs, characteristic circuits model
the characteristic function of data distribution in the continuous spectral domain, providing a unified
view for discrete and continuous random variables, and can further model distributions that do not
have closed-form probability density functions. We showed that both joint and marginal probability
densities can be computed exactly and efficiently using characteristic circuits. Finally, we empirically
showed that characteristic circuits approximate data distribution better than ECF, measured by the
squared characteristic function distance, and that characteristic circuits can also be competitive
density estimators as they win on 9 out of 12 heterogeneous data sets compared to SOTA models.

There are several avenues for future work. For instance, sampling from characteristic functions and,
in turn, characteristic circuits is not straightforward. One should explore existing literature discussing
sampling from CFs [Devroye, 1986, Ridout, 2009, Walker, 2017], and adapt them to sampling from
CCs. The circuit structure of characteristic circuits generated by structure learning has a high impact
on the performance of the characteristic circuit, and therefore an inappropriate structure can limit
the modelling power of characteristic circuits. Therefore, one should explore parameter learning of
characteristic circuits on more advanced circuit structures [Peharz et al., 2020] and, in particular,
using normalizing flows, resulting in what could be called characteristic flows.

Broader Impact. Our contributions are broadly aimed at improving probabilistic modelling. CCs
could be used to develop more scalable and more accurate probabilistic models, in particular over
mixed domains as common in economics, social science, or medicine. Scaling to even bigger mixed
models can open up even more potential applications, but also may require careful design to handle
overconfidence and failures of CC.

Acknowledgments and Disclosure of Funding

This work was supported by the Federal Ministry of Education and Research (BMBF) Competence
Center for AI and Labour (“KompAKI”, FKZ 02L19C150). It benefited from the Hessian Ministry
of Higher Education, Research, Science and the Arts (HMWK; projects “The Third Wave of AI”
and “The Adaptive Mind”), and the Hessian research priority programme LOEWE within the project
“WhiteBox”. MT acknowledges funding from the Academy of Finland (grant number 347279).

10

References

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, and Antonio Vergari. Semantic
probabilistic layers for neuro-symbolic learning. In Advances in Neural Information Processing
Systems (NeurIPS), volume 35, pages 29944–29959, 2022.

Abdul Fatir Ansari, Jonathan Scarlett, and Harold Soh. A characteristic function approach to
deep implicit generative modeling. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 7478–7487, 2020.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying
framework for tractable probabilistic models. Technical report, UCLA, 2020.

Kacper P Chwialkowski, Aaditya Ramdas, Dino Sejdinovic, and Arthur Gretton. Fast two-sample
testing with analytic representations of probability measures. In Advances in Neural Information
Processing Systems (NeurIPS), volume 28, 2015.

Alvaro HC Correia, Gennaro Gala, Erik Quaeghebeur, Cassio de Campos, and Robert Peharz. Con-
tinuous mixtures of tractable probabilistic models. In AAAI Conference on Artificial Intelligence,
volume 37, pages 7244–7252, 2023.

Harald Cramér. Mathematical methods of statistics, volume 26. Princeton university press, 1999.

Meihua Dang, Antonio Vergari, and Guy Broeck. Strudel: Learning structured-decomposable
probabilistic circuits. In International Conference on Probabilistic Graphical Models (PGM),
pages 137–148, 2020.

Meihua Dang, Antonio Vergari, and Guy Van den Broeck. Strudel: A fast and accurate learner of
structured-decomposable probabilistic circuits. International Journal of Approximate Reasoning,
140:92–115, 2022.

Adnan Darwiche. A differential approach to inference in bayesian networks. Journal of the ACM
(JACM), 50(3):280–305, 2003.

Richard A Davis, Thiago do Rêgo Sousa, and Claudia Klüppelberg. Indirect inference for time series
using the empirical characteristic function and control variates. Journal of Time Series Analysis,
42(5-6):653–684, 2021.

Luc Devroye. An automatic method for generating random variates with a given characteristic
function. SIAM journal on applied mathematics, 46(4):698–719, 1986.

Nicola Di Mauro, Gennaro Gala, Marco Iannotta, and Teresa MA Basile. Random probabilistic
circuits. In Uncertainty in Artificial Intelligence (UAI), pages 1682–1691, 2021.

Jan Eriksson and Visa Koivunen. Characteristic-function-based independent component analysis.
Signal Processing, 83(10):2195–2208, 2003.

Andrey Feuerverger and Roman A Mureika. The empirical characteristic function and its applications.
The annals of Statistics, pages 88–97, 1977.

Abram Friesen and Pedro Domingos. The sum-product theorem: A foundation for learning tractable
models. In International Conference on Machine Learning (ICML), pages 1909–1918, 2016.

Guido Fubini. Sugli integrali multipli. In Rendiconti, volume 16, pages 608–614. Accademia
Nazionale dei Lincei, 1907.

Robert Gens and Domingos Pedro. Learning the structure of sum-product networks. In International
Conference on Machine Learning (ICML), pages 873–880, 2013.

Chenlu Ke and Xiangrong Yin. Expected conditional characteristic function-based measures for
testing independence. Journal of the American Statistical Association, 2019.

John L Knight and Jun Yu. Empirical characteristic function in time series estimation. Econometric
Theory, 18(3):691–721, 2002.

11

Sangyeol Lee, Simos G Meintanis, and Charl Pretorius. Monitoring procedures for strict stationarity
based on the multivariate characteristic function. Journal of Multivariate Analysis, 189:104892,
2022.

David Lopez-Paz, Philipp Hennig, and Bernhard Schölkopf. The randomized dependence coefficient.
In Advances in Neural Information Processing Systems (NeurIPS), volume 26, 2013.

Eugene Lukacs. A survey of the theory of characteristic functions. Advances in Applied Probability,
4(1):1–37, 1972.

J Huston McCulloch. Simple consistent estimators of stable distribution parameters. Communications
in statistics-simulation and computation, 15(4):1109–1136, 1986.

Alejandro Molina, Antonio Vergari, Nicola Di Mauro, Sriraam Natarajan, Floriana Esposito, and
Kristian Kersting. Mixed sum-product networks: A deep architecture for hybrid domains. In AAAI
Conference on Artificial Intelligence, volume 32, 2018.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

John P Nolan. Multivariate elliptically contoured stable distributions: theory and estimation. Compu-
tational statistics, 28:2067–2089, 2013.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy
Van den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum networks: Fast and scalable
learning of tractable probabilistic circuits. In International Conference on Machine Learning
(ICML), pages 7563–7574, 2020.

Martin S Ridout. Generating random numbers from a distribution specified by its laplace transform.
Statistics and Computing, 19:439–450, 2009.

Zoltán Sasvári. Multivariate characteristic and correlation functions, volume 50. Walter de Gruyter,
2013.

Nairi Sedrakyan. About the applications of one useful inequality. Kvant Journal, 97(2):42–44, 1997.

Nikil Roashan Selvam, Guy Van den Broeck, and YooJung Choi. Certifying fairness of probabilistic
circuits. In AAAI Conference on Artificial Intelligence, volume 37, pages 12278–12286, 2023.

Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Thomas Liebig,
and Kristian Kersting. Conditional sum-product networks: Modular probabilistic circuits via gate
functions. International Journal of Approximate Reasoning, 140:298–313, 2022.

Andy Shih and Stefano Ermon. Probabilistic circuits for variational inference in discrete graphical
models. In Advances in Neural Information Processing Systems (NeurIPS), volume 33, pages
4635–4646, 2020.

Bernard W Silverman. Density estimation for statistics and data analysis. Routledge, 2018.

Bharath K Sriperumbudur, Arthur Gretton, Kenji Fukumizu, Bernhard Schölkopf, and Gert RG
Lanckriet. Hilbert space embeddings and metrics on probability measures. The Journal of Machine
Learning Research, 11:1517–1561, 2010.

Liangjun Su and Halbert White. A consistent characteristic function-based test for conditional
independence. Journal of Econometrics, 141(2):807–834, 2007.

Martin Trapp, Robert Peharz, Hong Ge, Franz Pernkopf, and Zoubin Ghahramani. Bayesian learning
of sum-product networks. In Advances in Neural Information Processing Systems (NeurIPS),
volume 32, 2019.

Martin Trapp, Robert Peharz, Franz Pernkopf, and Carl Edward Rasmussen. Deep structured
mixtures of gaussian processes. In International Conference on Artificial Intelligence and Statistics
(AISTATS), pages 2251–2261, 2020.

12

Antonio Vergari, Alejandro Molina, Robert Peharz, Zoubin Ghahramani, Kristian Kersting, and
Isabel Valera. Automatic bayesian density analysis. In AAAI Conference on Artificial Intelligence,
volume 33, pages 5207–5215, 2019.

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck. A compositional
atlas of tractable circuit operations for probabilistic inference. In Advances in Neural Information
Processing Systems (NeurIPS), volume 34, pages 13189–13201, 2021.

Stephen G Walker. A laplace transform inversion method for probability distribution functions.
Statistics and Computing, 27(2):439–448, 2017.

Benjie Wang, Matthew R Wicker, and Marta Kwiatkowska. Tractable uncertainty for structure
learning. In International Conference on Machine Learning (ICML), pages 23131–23150, 2022.

Xia Wang and Yongmiao Hong. Characteristic function based testing for conditional independence:
A nonparametric regression approach. Econometric Theory, 34(4):815–849, 2018.

Jun Yu. Empirical characteristic function estimation and its applications. Econometric reviews, 2004.

Zhongjie Yu, Fabrizio Ventola, and Kristian Kersting. Whittle networks: A deep likelihood model
for time series. In International Conference on Machine Learning (ICML), pages 12177–12186,
2021a.

Zhongjie Yu, Mingye Zhu, Martin Trapp, Arseny Skryagin, and Kristian Kersting. Leveraging
probabilistic circuits for nonparametric multi-output regression. In Uncertainty in Artificial
Intelligence (UAI), pages 2008–2018, 2021b.

Matej Zečević, Devendra Singh Dhami, Athresh Karanam, Sriraam Natarajan, and Kristian Kersting.
Interventional sum-product networks: Causal inference with tractable probabilistic models. In
Advances in Neural Information Processing Systems (NeurIPS), volume 34, pages 15019–15031,
2021.

Honghua Zhang, Brendan Juba, and Guy Van den Broeck. Probabilistic generating circuits. In
International Conference on Machine Learning (ICML), pages 12447–12457, 2021.

Han Zhao, Tameem Adel, Geoff Gordon, and Brandon Amos. Collapsed variational inference
for sum-product networks. In International Conference on Machine Learning (ICML), pages
1310–1318, 2016.

13

Supplementary Material:
Characteristic Circuits

This supplementary document is organized as follows. Appendix A provides a detailed description of
notations and the definition of induced trees. Appendix B gives the proof of marginal and moments
computation in characteristic circuits. The experimental settings for parameter learning, as well as
extra experimental results of numerical integration, is listed in Appendix C. In addition, we provide
an analytical solution for calculating the characteristic function distance between two compatible
characteristic circuits in Appendix D. Lastly, we describe the statistics of the employed heterogeneous
data sets in Appendix E.

A Notation and Background

In this section we recap the notations and the background.

A.1 Notation

We use the following notations throughout the paper. Let G be a computational graph with sum nodes
S, product nodes P, leaf nodes L, and graph parameters θG . Denote V(G) the vertices of G and E(G)
the edges of G. The scope of a node N is denoted as ψ(N), with pN the number of RVs in the scope
of N. ch(·) denotes the children of a node.

Let X = {Xj}dj=1 be a set of random variables. X can also be used as a random vector. Denote
φX(t) the characteristic function of X for t ∈ Rd, and φC(t) the estimation of characteristic function
from a characteristic circuit C. Let k ∈ Nd0 denote the order of partial derivatives of each variable in
φC(t), and ∂k

∂t
k1
1 ···∂t

kd
d

φC(t) the partial derivative of φC(t) given the order k, and |k| the sum of all

the orders in k. Denote ∂kN

∂t
kN1
N1
···∂t

kNpN
NpN

φN(t) the partial derivative at node N given k, and d
kψ(L)

dt
kψ(L)

φL(t)

the derivative at leaf L, where kψ(L) is the corresponding order of the scope at leaf L.

A.2 Induced Trees

The notion of induced trees is proposed to interpret SPNs as deep structured mixture models, which
is defined as the following [Zhao et al., 2016].
Definition A.1 (Induced Trees). Given a complete and decomposable SPN S over X =
{X1, · · · , Xn}, T = (TV , TE) is called an induced tree SPN from S if

1. Root(S) ∈ TV .

2. If v ∈ TV is a sum node, then exactly one child of v in S is in TV , and the corresponding
edge is in TE .

3. If v ∈ TV is a product node, then all the children of v in S are in TV , and the corresponding
edges are in TE .

Here TV is the node set of T and TE is the edge set of T .

Given the definition of induced trees, the distribution of an SPN S(x) can be written as

S(x) =
τ∑
i=1

∏
(S,N)∈E(Ti)

wS,N

∏
L∈V(Ti)

p(x | θL), (17)

where τ denotes the number of induced trees. In the main paper we use the notion of induced trees to
express the inversion output and the moments computation of the characteristic circuit.

B Proofs

B.1 Proof of Marginal Computation

In this subsection we provide the proof of computing marginals in CCs.

Proof. Let C = ⟨G, ψ, θG⟩ be a CC on RVs Z = X ∪ Y with univariate leave nodes. Further, let
n = |X|, m = |Y | and let t = tX ∪ tY ∈ Rn+m.

For leaf nodes L in C, we have φL(tj) =

{
1 if tj = 0

φL(tj) otherwise
by definition of CFs.

For product nodes, let P be a product node that splits at least one Yj from its scope into a single child
and let this child be denoted as Lj , and the remaining scopes to be X . Then by setting tj = 0, we
have

φPX∪Yj
(tX ∪ tj) = φPX∪Yj

(tX ∪ 0) = φLj (0)︸ ︷︷ ︸
=1

∏
N∈ch(P)\Lj

φN(tψ(N)) = φPX
(tX). (18)

For sum nodes, they are convex combinations that the weights sum up to one. Therefore, by setting
tY = 0 and recursively apply the above, we obtain the sub-circuit corresponding to the marginal of
X tractably in CCs.

B.2 Proof of Moments Computation

In this subsection we provide the proof of computing moments in CCs.

Proof. Let C = ⟨G, ψ, θG⟩ be a characteristic circuit on RVs X = {Xj}dj=1 with univariate leave
nodes and pN the number of RVs in the scope of N. Denote k = [k1, · · · , kd] ∈ Nd0 a d dimensional
vector for the order of partial derivative for RV X , and kN = [kN1 , · · · , kNpN] a pN dimensional
vector for the order of partial derivative for Xψ(N) = {XN1

, · · · , XNpN
} at node N.

Sum Nodes. If N is a sum node S, then:

∂kS

∂t
kS1
S1

· · · ∂t
kSpS
SpS

φS(0) =
∂kS

∂t
kS1
S1

· · · ∂t
kSpS
SpS

∑
N∈ch(S)

wS,NφN(0) =
∑

N∈ch(S)

wS,N
∂kN

∂t
kN1

N1
· · · ∂t

kNpN
NpN

φN(0),

(19)

where we applied Xψ(S) = Xψ(N) for N ∈ ch(S) at sum node S. Therefore, computing the derivative
at S reduces to the derivative at its children.

Product Nodes. If N is a product node P, then:

∂kP

∂t
kP1
P1

· · · ∂t
kPpP
PpP

φP(0) =
∂kP

∂t
kP1
P1

· · · ∂t
kPpP
PpP

∏
N∈ch(P)

φN(0) =
∏

N∈ch(P)

∂kN

∂t
kN1

N1
· · · ∂t

kNpN
NpN

φN(0), (20)

where we utilized Xψ(P) =
⋃

N∈ch(P) Xψ(N) and
⋂

N∈ch(P) Xψ(N) = ø.

Leaf Nodes. If N is a univariate leaf node L, we can directly have:

∂kN

∂tkNψ(N)

φN(0) =
dkψ(L)

dtkψ(L)
φL(0). (21)

Through the recursive application of Eq. (19) and Eq. (20), we obtain that Eq. (15) reduces to
derivatives at the leaves and can be computed efficiently.

C Experiments

C.1 Experimental Settings for Parameter Learning

In this section, we illustrate the details of the settings for parameter learning.

Random Structure. The random structure for parameter learning is created by recursively creating
sum and product nodes. A sum node is created with random normalised weights with two children,
and a product node is created by randomly splitting the scopes into two subsets. The splitting
terminates when there is only one scope at a node, and then a leaf node with randomly initialised
parameters is created. The categorical leaf nodes are initialised with uniformly sampled weights after
normalization, the mean and location of normal and α-stable distribution leaves are initialised with
samples from a normal distribution centred at the average of training data. Gaussian leaves are used
for synthetic data sets and α-stable distribution leaves are used for the UCI data sets.

Parameter Learning. For all parameter learning experiments, we employ a linearly decreasing
learning rate from lr1 to lr2 with iterations iter. The gradient is obtained from the training data
without using batches, as the data sets in our experiments are of small size. The objective CFD is
calculated with a fixed η = 1 and k = 100.

For results on synthetic data sets in Table 1 from the main paper, the column Random Structure is
directly evaluated from the above randomly initialised CC without parameter learning. The results of
Random Structure & Parameter Learning are obtained from the above CC after parameter learning
with lr1 = 0.5, lr2 = 0.01 and iter = 300 for data set MM, and lr1 = 1.0, lr2 = 0.05 and iter = 40
for data set BN. Structure Learning follows the structure learning setup described in the main body.
When applying parameter learning on the model from Structure Learning with lr1 = 0.5, lr2 = 0.005
and iter = 300 for data set MM, and lr1 = 0.5, lr2 = 0.01 and iter = 200 for data set BN, we obtain
the results of Structure Learning & Parameter Learning. Finally, we randomise the weights and
leaf parameters of the model from Structure Learning and apply parameter learning with lr1 = 0.5,
lr2 = 0.01 and iter = 300 for data set MM, and lr1 = 1.0, lr2 = 0.05 and iter = 40 for data set BN,
resulting in Structure Learning (random w) & Parameter Learning. Note that the mean of a Gaussian
leaf is initialised with samples from a normal distribution centred at the average of training data.

C.2 Numerical Integration with Quadrature

Throughout the paper we use Gauss-Hermit quadrature for numerical integration at the leaves. In
order to demonstrate the reliability of the numerical integration, we test with an increasing number
of grid points {50, 100, 200, 300} through quadrature and show the corresponding output at the
root in Fig. 5. The CCs are learned from structure learning with either the simplified G-test based
splitting, or the random dependency coefficient (RDC) based splitting. For the RDC based splitting,
the threshold, denoted as ξ, is chosen from grid search from {0.1, 0.2, · · · , 0.9} on each validation
set with 50 grid points for the quadrature. The results indicate that a low value of degree in quadrature
is sufficient since numerical integration is only required on the real line (1D). The results also show
that RDC based structure learning outperforms the G-test based splitting on most of the data sets, as
it is designed for independence test on heterogeneous data.

D Analytical Solution of the Characteristic Function Distance

The squared characteristic function distance (CFD)

CFD2
ω(P,Q) =

∫
Rd

|φP(t)− φQ(t)|2 ω(t; η)dt (22)

can not only be estimated with MC methods by sampling from ω(t; η), but also be calculated through
the characteristic circuits analytically, if φP(t) and φQ(t) are compatible characteristic circuits.

Eq. (22) can be rewritten as

CFD2
ω(P,Q) =

∫
Rd

(φP(t)− φQ(t))
(
φP(t)− φQ(t)

)
ω(t; η)dt (23)

=

∫
Rd

(
φP(t)φP(t)− φP(t)φQ(t)− φQ(t)φP(t) + φQ(t)φQ(t)

)
ω(t; η)dt, (24)

where z denotes the conjugate of the complex number z. Without loss of generality, let us derive
the analytical solution of

∫
Rd φP(t)φQ(t)ω(t; η)dt, since the derivation can be directly applied to

the other terms in Eq. (24). In the following, we omit the term ω(t; η) at sum and product nodes for

100 200 300

20

30

40

Abalone, ξ = 0.4

L
og

-l
ik

el
ih

oo
d

100 200 300

−5

0

5

10

Adult, ξ = 0.4

100 200 300

−3

−2

−1

0

Australian, ξ = 0.2

100 200 300
−18

−16

−14

−12

Autism, ξ = 0.5

L
og

-l
ik

el
ih

oo
d

100 200 300
−13.5

−13

−12.5

−12

Breast, ξ = 0.4

100 200 300
−13.5

−13

−12.5

−12

Chess, ξ = 0.3

100 200 300
−6

−4

−2

0

Crx, ξ = 0.3

L
og

-l
ik

el
ih

oo
d

100 200 300
−25

−24.5

−24

−23.5

Dermatology, ξ = 0.8
100 200 300

0

2

4

Diabetes, ξ = 0.3

100 200 300
−15.5

−15

−14.5

−14

German, ξ = 0.3

L
og

-l
ik

el
ih

oo
d

100 200 300
−28

−27.5

−27

−26.5

Student, ξ = 0.4
100 200 300

15

20

25

Wine, ξ = 0.4

Figure 5: Log-likelihoods from CCs with varying number of grid points in the quadrature (x-axis).
The CCs are learned from structure learning with either simplified G-test or RDC based
splitting for product nodes.

simplicity. At sum nodes S and S′,

∫
S(t)S′(t)dt =

∫ ∑
N∈ch(S)

wS,NN(t)

 ∑
N′∈ch(S′)

wS′,N′N′(t)

 dt (25)

=

∫ ∑
N∈ch(S)

∑
N′∈ch(S′)

wS,NwS′,N′N(t)N′(t)dt (26)

=
∑

N∈ch(S)

∑
N′∈ch(S′)

wS,NwS′,N′

∫
N(t)N′(t)dt. (27)

At product nodes P and P′,∫
P(t)P′(t)dt =

∫ ∏
N∈ch(P)

N(t[ψ(N)])

 ∏
N′∈ch(P′)

N′(t[ψ(N′)])

 dt (28)

=

∫ ∏
(N,N′)∈∆P×P′

N(t[ψ(N)]︸ ︷︷ ︸
=t̂

)N′(t[ψ(N′)]) dt (compatibility) (29)

where ∆P×P′ denotes the diagonal of the Cartesian product of the children of P and P′, i.e.,
diag(ch(P) × ch(P′)), compatibility ensures that both product nodes apply the same partition
of the scope ψ(P) = ψ(P′) with parts in the same order, and t[ψ(N)] is the projection of t to the scope
of N. Therefore,

=
∏

(N,N′)∈∆P×P′

∫
RpN

N(t̂)N′(t̂) dt̂. (compatibility) (30)

At univariate leaf nodes L and L′, assuming both leaf nodes model univariate normal distribution with
parameters (µ, σ) and (µ′, σ′), and ω(t; η) = 1

η
√
2π

exp(−t
2

2η2), then∫
R
L(t)L′(t)ω(t; η)dt =

∫
R
exp(i t µ− 1

2
σ2t2)exp(i t µ′ − 1

2
σ′2t2)

1

η
√
2π

exp(
−t2

2η2
)dt (31)

=
1

η
√
2π

∫
R
exp(i t (µ− µ′)− 1

2
(σ2 + σ′2 +

1

η2
)t2)dt (ez = ez)

(32)

=
1

ησ̂
exp(

−µ̂2

2σ̂2
), (integral of a Gaussian function) (33)

where µ̂ = µ− µ′ and σ̂ =
√
σ2 + σ′2 + 1/η2 . Therefore, at univariate leaf nodes, it can be solved

either analytically or with Monte-Carlo integration:
∫
R L(t)L′(t)ω(t; η)dt ≈ 1

k

∑k
j=1 φL(tj)φL′(tj),

where {t1, · · · , tk}
i.i.d.∼ ω(t; η). With the above properties, the CFD between two compatible CCs

can be calculated from bottom-up analytically and efficiently.

E Statistics of the Heterogeneous Data Sets

In this section we briefly describe some statistics of the heterogeneous data sets, to provide a better
and more detailed view of the data sets.

Table 3: Statistics of the heterogeneous data sets, including the number of instances in the train-
ing/validation/test sets and the number of total/discrete/continuous RVs for each subset.

Data Set #train #val #test #RVs #D. RVs #C. RVs

Abalone 2923 418 836 9 1 8
Adult 22792 3256 6513 13 7 6
Australian 482 70 138 10 3 7
Autism 2464 352 705 25 15 10
Breast 476 68 137 10 9 1
Chess 19639 2805 5612 7 7 0
Crx 455 65 131 11 5 6
Dermatology 256 36 74 34 33 1
Diabetes 537 77 154 8 1 7
German 700 99 201 17 14 3
Student 276 40 79 20 19 1
Wine 4547 650 1300 12 1 11

	Introduction
	Related Work
	Preliminaries on Probabilistic Circuits and Characteristic Functions
	Probabilistic Circuits (PCs)
	Characteristic Functions (CFs)

	Characteristic Circuits
	Theoretic Properties of Characteristic Circuits
	Efficient computation of densities
	Efficient computation of marginals
	Efficiently computing moments via differentiation

	Learning Characteristic Circuits from Data

	Experimental Evaluation
	Conclusion
	 Supplementary Material: Characteristic Circuits
	Notation and Background
	Notation
	Induced Trees

	Proofs
	Proof of Marginal Computation
	Proof of Moments Computation

	Experiments
	Experimental Settings for Parameter Learning
	Numerical Integration with Quadrature

	Analytical Solution of the Characteristic Function Distance
	Statistics of the Heterogeneous Data Sets

