Representation Matters for Mastering Chess: Improved Feature Representation in AlphaZero Outperforms Switching to Transformers

TECHNISCHE UNIVERSITÄT DARMSTADT

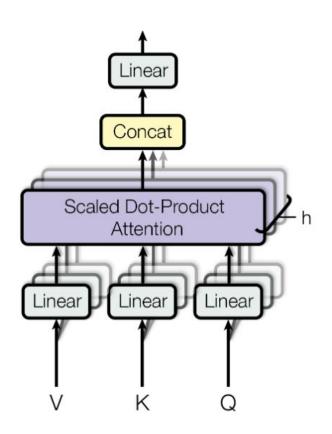
European Conference on Artificial Intelligence (ECAI)

Johannes Czech¹

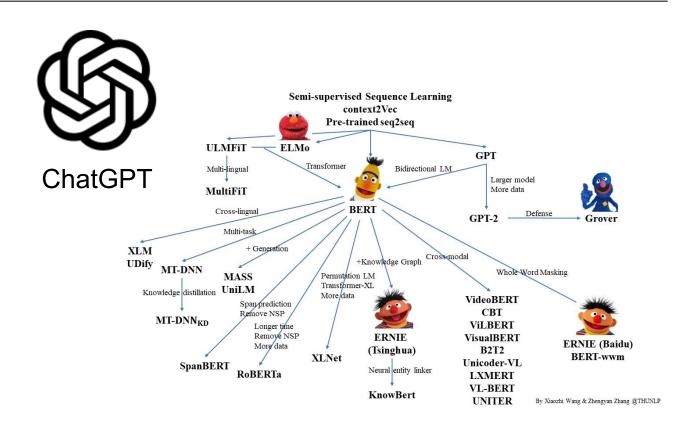
Jannis Blüml^{1,2}

Kristian Kersting^{1,2,3,4}

Hedinn Steingrimsson^{5,6}


Artificial Intelligence and Machine Learning Lab, TU Darmstadt, Germany
 Hessian Center for Artificial Intelligence (hessian.AI), Darmstadt, Germany
 Centre for Cognitive Science, TU Darmstadt, Germany
 German Research Center for Artificial Intelligence (DFKI), Darmstadt, Germany
 Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
 The Steingrimsson Foundation (safesystem2.org), Houston, TX, USA

 $Email: \{johannes.czech, blueml, kersting\} @cs.tu-darmstadt.de, hedinn.steingrimsson @rice.edu$



Success Stories of the Transformer Architecture

Multi-Head Attention Block of the Transformer architecture [VSP+17]

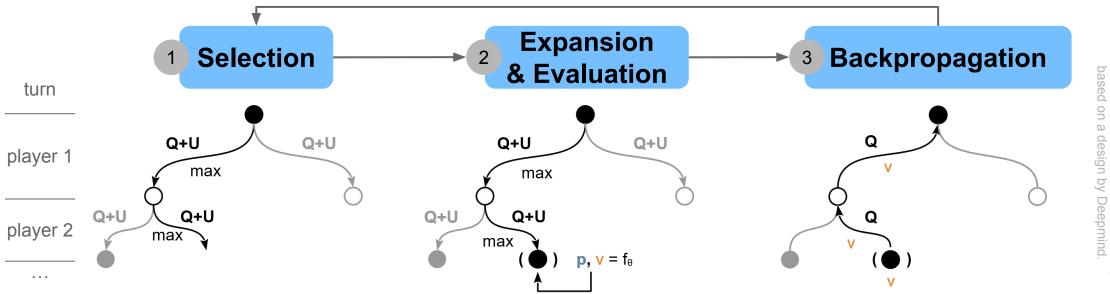
The transformer architecture is used in many Large Language Models (LLMs)

Success Stories of the Transformer Architecture

Have transformers become the "Swiss Army Knife" of Al?

Success Stories of AlphaZero

Remarkable Examples with ≤ 2 Players


Chess, Shogi, and Go above grandmaster level

[SHS+18]

Mastering Atari with a learned environment model

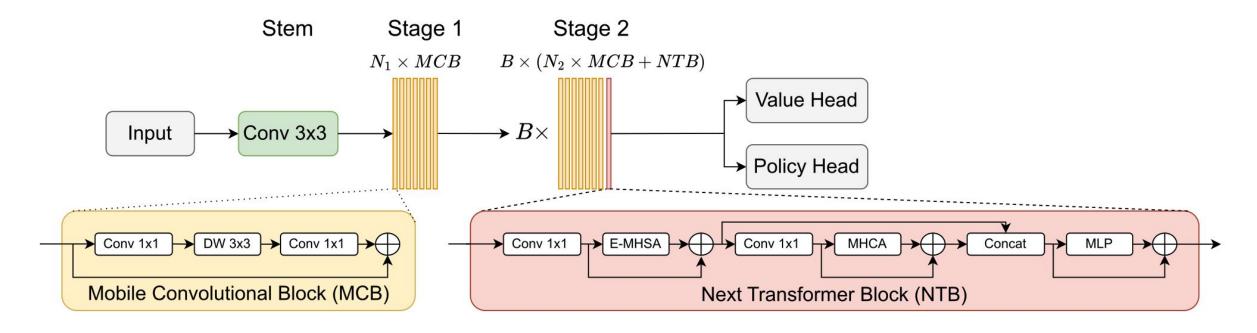
[SAH+20]

MCTS Phases in AlphaZero [SHS+18] based on a design by Deepmind.

Feature Engineering

"Deep Learning removes the need for feature engineering" - François Chollet

François Chollet


Research Questions

- (Q1) Is the combination of AlphaZero with Vision Transformers beneficial in the game of chess?
- (Q2) How important is the input and output representation for AlphaZero?

AlphaVile Architecture: CNN + ViT

- Hybrid architecture of Mobile Convolutional Block [SHZ+18] and Next Transformer Block [LXL+22]
- Classical AlphaZero network design: shared neural network with two outputs

Feature Extension: The Importance of Representation

Feature	Planes	Type	Comment							
P1 pieces	6	bool	order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN, KING}							
P2 pieces	6	bool	order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN, KING}							
Repetitions*	2	bool	how often the board positions has occurred							
En-passant square	1	bool	the square where en-passant capture is possible							
Color*	1	bool	all zeros for black and all ones for white							
Total move count*	1	int	integer value setting the move count (UCI notation)							
P1 castling*	2	bool	binary plane, order: {KING_SIDE, QUEEN_SIDE}							
P2 castling*	2	bool	binary plane, order: {KING_SIDE, QUEEN_SIDE}							
No-progress count*	1	int	sets the no progress counter (FEN halfmove clock)							
Last Moves	16	bool	origin and target squares of the last eight moves							
is960*	1	bool	if the 960 variant is active							
P1 pieces	1	bool	grouped mask of all P1 pieces							
P2 pieces	1	bool	grouped mask of all P2 pieces							
Checkerboard	1	bool	chess board pattern							
P1 Material difference*	5	int	order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN}							
Opposite color bishops*	1	bool	if they are only two bishops of opposite color							
Checkers	1	bool	all pieces giving check							
P1 material count*	5	int	order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN}							
Total	39 / 52									

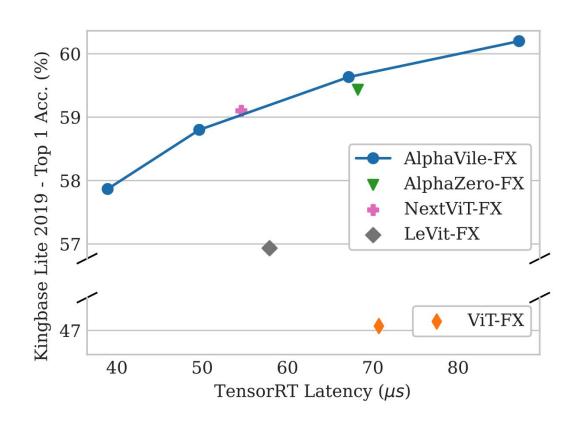
We added several features:

- piece mask for player 1 and 2
- checkerboard pattern
- material difference information
- opposite color bishop information
- checking pieces
- material count for player 1

We removed several features:

- color information
- total move count

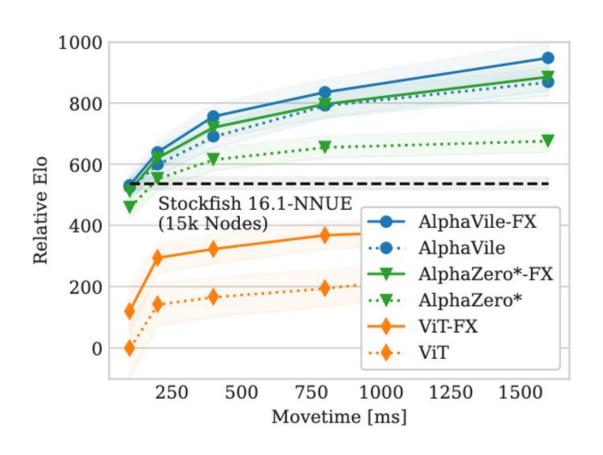
Feature Extension: The Importance of Representation


Size	B	N_1	N_2	# Blocks	Base Channels
AlphaVile (tiny)	1	8	6	15	192
AlphaVile (small)	1	11	10	22	192
AlphaVile (normal)	2	10	7	26	224
AlphaVile (large)	2	13	11	37	224

- AlphaVile is available in various sizes
 - tiny
 - small
 - normal
 - large

- **Input Representation** Value Loss Latency (μs) **Combined Loss** Policy Acc. (%) 52.08 Inputs V.1.0 1.1918 ± 0.0028 58.63 ± 0.05 0.4448 ± 0.0007 Inputs V.2.0 1.1901 ± 0.0049 58.67 ± 0.17 0.4371 ± 0.0002 53.54
- Inputs V.2.0 outperform Inputs V.1.0, especially with regards to the value loss
- Value Head Type **Combined Loss** Policy Acc. (%) **Value Loss** Latency (μs) 53.35 **MSE** 1.1933 ± 0.0021 58.50 ± 0.08 0.4406 ± 0.0002 **WDLP** 1.1901 ± 0.0051 58.73 ± 0.12 0.4356 ± 0.0006 53.38
- The Win-Draw-Loss-Plys-to-end (WDLP)² value head scores better than the Mean-Squared-Error (MSE) one

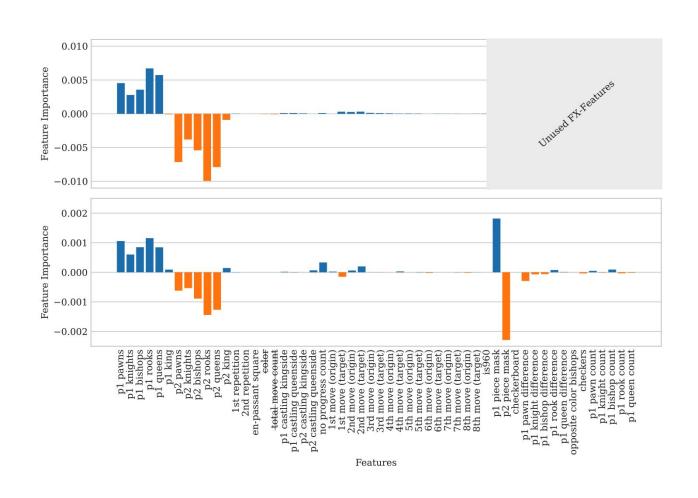
Results: Validation Move Accuracy



- The standard ViT severely underperforms
- Supervised training on the KingBase 2019 lite dataset³
- AlphaVile-normal is slightly better than AlphaZero

3: https://archive.org/details/KingBaseLite2019

Results: Playing Strength



- The Feature eXtended (FX) versions beat the standard version by up to 180 Elo points
- The AlphaVile-normal version beats AlphaZero by about 30 Elo
- The classical ViT version lacks behind by the other versions

Feature Extension: The Importance of Representation

- Measuring feature importance using Integrated Gradient (IG) method
 - measured with respect to value
- Newly added features show significant usage
 - especially player 1 & 2 piece masks
- p1 pieces show positive attribution while
 p2 pieces have negative impact
 - exception: king piece

Feature Extension: Opposite Color Bishop Endgames

FEN	Ground Truth	Net Eval	Abs. Net Eval	FX-Net Eval	Abs. FX-Net Eval	
8/2k1b3/2P5/3KP2B/8/8/8/8 w 0 56	DRAW	0.3332	0.3332	0.2025	0.2025	
8/3k4/8/2pK4/8/4b1p1/8/5B2 w 0 56	DRAW	-0.4940	0.4940	-0.2304	0.2304	
5k2/8/8/7p/1b1p4/8/B7/5K2 b 0 56	DRAW	0.4385	0.4385	0.2500	0.2500	
8/2b1k3/8/1B1PP3/3K4/8/8/8 w 0 56	DRAW	0.4313	0.4313	0.4561	0.4561	
8/2k5/4Bp2/2b1p1p1/4K2p/7P/8/8 b 0 56	DRAW	0.1648	0.1648	0.2121	0.2121	
8/8/8/5B2/1p3b2/2k1p3/8/5K2 w 0 56	DRAW	-0.6412	0.6412	-0.4157	0.4157	
8/3k4/p2P4/2P4p/2bB4/P6P/5K2/8 w 0 56	DRAW	0.3874	0.3874	0.4465	0.4465	
7b/4k2P/6K1/2p2P2/7P/1B6/8/8 b 0 56	DRAW	-0.6286	0.6286	-0.6233	0.6233	
4k2b/7P/5PK1/7P/8/1B6/8/8 w 0 56	DRAW	0.7649	0.7649	0.8562	0.8562	
8/5pK1/4k3/6B1/5PbP/6P1/8/8 b 0 56	DRAW	-0.4810	0.4810	-0.4294	0.4294	
2r3k1/5ppp/p7/5q2/3P4/b2B2P1/P1R2P1P/5QK1 b 0 56	DRAW	-0.5099	0.5099	-0.5594	0.5594	
5k2/5pp1/p6p/5B2/3P4/6P1/P3KP1P/2b5 w 0 56	DRAW	0.3222	0.3222	0.4718	0.4718	
3b4/p4B1p/8/6k1/6P1/8/1P3PK1/8 w 0 56	DRAW	0.2920	0.2920	0.0783	0.0783	
6B1/4b3/7p/3Pk2P/6PP/7K/8/8 w 0 56	DRAW	0.4867	0.4867	0.5590	0.5590	
8/8/8/7p/2p5/5K1k/2Bb4/8 w 0 56	DRAW	-0.3318	0.3318	-0.1916	0.1916	
3R4/4BK1k/r5p1/2P2bP1/8/8/8/8 w 0 56	WHITE WIN	0.8304	0.8304	0.8714	0.8714	
8/2k1b3/2P5/3K1P1B/8/8/8/8 w 0 56	WHITE WIN	0.4072	0.4072	0.3321	0.3321	
3k1b2/8/3PP3/1B1K4/8/8/8/8 w 0 56	WHITE WIN	0.7121	0.7121	0.8229	0.8229	
8/2k5/2P1K3/6p1/5p2/2b2B1P/6P1/8 b 0 56	WHITE WIN	-0.2412	0.2412	-0.1441	0.1441	
8/8/4b1p1/2Bp3p/5P1P/1pK1Pk2/8/8 b 0 56	BLACK WIN	0.4053	0.4053	0.4225	0.4225	
Mean values for draws ↓	0		0.4472		0.3988	
Mean values for wins ↑	1		0.5192		0.5186	

 Our new feature representation improves the evaluation of opposite color bishop endgames.


Summary and Future Work

Contributions

• (Q1) Is the combination of AlphaZero with Vision Transformers beneficial in the game of chess?

Yes, convolutional-transformer hybrid architectures can be beneficial if efficient modules are used.

It plays a significant role in chess as it can help to offload work for the neural network, such as current material information.

Future Work

- Find better features for the transformer architecture.
- Improve architecture design.

Code, Paper

References

[LXL+22]

[SHS+18] David Silver, et al. 2018. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362, 6419 (2018), 1140–1144.
 [SAH+20] Julian Schrittwieser, et al. Mastering Atari, Go, chess and shogi by planning with a learned model. Nature 588, 604–609 (2020).
 [VSP+17] Vaswani, et al. 2017. Attention Is All You Need. NIPS 2017, Long Beach, CA, USA
 [SHZ+18] Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2018.

vision transformer for efficient deployment in realistic industrial scenarios. 2022.

Li, X. Xia, W. Li, H. Li, X. Wang, X. Xiao, R. Wang, M. Zheng, and X. Pan. Next-vit: Next generation