Source code for src.data_kandinsky

import os
import cv2
import torch
import torch.utils.data
import torchvision.transforms as transforms
import numpy as np
import random
random.seed(10)


[docs]class KANDINSKY(torch.utils.data.Dataset): """Kandinsky Patterns dataset. """ def __init__(self, dataset, split, img_size=128, small_data=False): self.img_size = img_size self.small_data = small_data assert split in { "train", "val", "test", } self.image_paths, self.labels = load_images_and_labels( dataset=dataset, split=split, small_data=self.small_data) def __getitem__(self, item): image = load_image_yolo( self.image_paths[item], img_size=self.img_size) image = torch.from_numpy(image).type(torch.float32) / 255. label = torch.tensor(self.labels[item], dtype=torch.float32) return image, label def __len__(self): return len(self.labels)
[docs]def load_images_and_labels(dataset='twopairs', split='train', img_size=128, small_data=False): """Load image paths and labels for kandinsky dataset. """ image_paths = [] labels = [] folder = 'data/kandinsky/' + dataset + '/' + split + '/' true_folder = folder + 'true/' false_folder = folder + 'false/' filenames = sorted(os.listdir(true_folder)) # sample 10% if small data if small_data: n = int(len(filenames)/10) filenames = random.sample(filenames, n) for filename in filenames: if filename != '.DS_Store': image_paths.append(os.path.join(true_folder, filename)) labels.append(1) filenames = sorted(os.listdir(false_folder)) # sample 10% if small data if small_data: n = int(len(filenames)/10) filenames = random.sample(filenames, n) for filename in filenames: if filename != '.DS_Store': image_paths.append(os.path.join(false_folder, filename)) labels.append(0) return image_paths, labels
[docs]class KANDINSKY_POSITIVE(torch.utils.data.Dataset): """Kandinsky Patterns dataset. """ def __init__(self, dataset, split, img_size=128, small_data=False): self.img_size = img_size self.small_data = small_data assert split in { "train", "val", "test", } self.image_paths, self.labels = load_images_and_labels_positive( dataset=dataset, split=split, small_data=self.small_data) # sample 500 # only validation is used to generate clauses def __getitem__(self, item): image = load_image_yolo( self.image_paths[item], img_size=self.img_size) image = torch.from_numpy(image).type(torch.float32) / 255. label = torch.tensor(self.labels[item], dtype=torch.float32) return image, label def __len__(self): return len(self.labels)
[docs]def load_images_and_labels_positive(dataset='twopairs', split='train', img_size=128, small_data=False): """Load image paths and labels for kandinsky dataset. """ image_paths = [] labels = [] folder = 'data/kandinsky/' + dataset + '/' + split + '/' true_folder = folder + 'true/' filenames = sorted(os.listdir(true_folder))[:500] # n = 500 #int(len(filenames)/10) #filenames = random.sample(filenames, n) for filename in filenames: if filename != '.DS_Store': image_paths.append(os.path.join(true_folder, filename)) labels.append(1) return image_paths, labels
[docs]def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32): """A utilitiy function for yolov5 model to make predictions. The implementation is from the yolov5 repository. """ import cv2 # Resize and pad image while meeting stride-multiple constraints shape = img.shape[:2] # current shape [height, width] if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not scaleup: # only scale down, do not scale up (for better test mAP) r = min(r, 1.0) # Compute padding ratio = r, r # width, height ratios new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - \ new_unpad[1] # wh padding if auto: # minimum rectangle dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding elif scaleFill: # stretch dw, dh = 0.0, 0.0 new_unpad = (new_shape[1], new_shape[0]) ratio = new_shape[1] / shape[1], new_shape[0] / \ shape[0] # width, height ratios dw /= 2 # divide padding into 2 sides dh /= 2 if shape[::-1] != new_unpad: # resize img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) img = cv2.copyMakeBorder( img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border return img, ratio, (dw, dh)
[docs]def load_image_yolo(path, img_size, stride=32): """Load an image using given path. """ img0 = cv2.imread(path) # BGR assert img0 is not None, 'Image Not Found ' + path img = cv2.resize(img0, (img_size, img_size)) # Convert img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB and HWC to CHW img = np.ascontiguousarray(img) return img