Source code for src.yolov5.models.experimental

# YOLOv5 experimental modules

import numpy as np
import torch
import torch.nn as nn

from yolov5.models.common import Conv, DWConv
from yolov5.utils.google_utils import attempt_download


[docs]class CrossConv(nn.Module): # Cross Convolution Downsample def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False): # ch_in, ch_out, kernel, stride, groups, expansion, shortcut super(CrossConv, self).__init__() c_ = int(c2 * e) # hidden channels self.cv1 = Conv(c1, c_, (1, k), (1, s)) self.cv2 = Conv(c_, c2, (k, 1), (s, 1), g=g) self.add = shortcut and c1 == c2
[docs] def forward(self, x): return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
[docs]class Sum(nn.Module): # Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070 def __init__(self, n, weight=False): # n: number of inputs super(Sum, self).__init__() self.weight = weight # apply weights boolean self.iter = range(n - 1) # iter object if weight: self.w = nn.Parameter(-torch.arange(1., n) / 2, requires_grad=True) # layer weights
[docs] def forward(self, x): y = x[0] # no weight if self.weight: w = torch.sigmoid(self.w) * 2 for i in self.iter: y = y + x[i + 1] * w[i] else: for i in self.iter: y = y + x[i + 1] return y
[docs]class GhostConv(nn.Module): # Ghost Convolution https://github.com/huawei-noah/ghostnet # ch_in, ch_out, kernel, stride, groups def __init__(self, c1, c2, k=1, s=1, g=1, act=True): super(GhostConv, self).__init__() c_ = c2 // 2 # hidden channels self.cv1 = Conv(c1, c_, k, s, None, g, act) self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)
[docs] def forward(self, x): y = self.cv1(x) return torch.cat([y, self.cv2(y)], 1)
[docs]class GhostBottleneck(nn.Module): # Ghost Bottleneck https://github.com/huawei-noah/ghostnet def __init__(self, c1, c2, k=3, s=1): # ch_in, ch_out, kernel, stride super(GhostBottleneck, self).__init__() c_ = c2 // 2 self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1), # pw # dw DWConv( c_, c_, k, s, act=False) if s == 2 else nn.Identity(), GhostConv(c_, c2, 1, 1, act=False)) # pw-linear self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False), Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()
[docs] def forward(self, x): return self.conv(x) + self.shortcut(x)
[docs]class MixConv2d(nn.Module): # Mixed Depthwise Conv https://arxiv.org/abs/1907.09595 def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): super(MixConv2d, self).__init__() groups = len(k) if equal_ch: # equal c_ per group i = torch.linspace(0, groups - 1E-6, c2).floor() # c2 indices c_ = [(i == g).sum() for g in range(groups)] # intermediate channels else: # equal weight.numel() per group b = [c2] + [0] * groups a = np.eye(groups + 1, groups, k=-1) a -= np.roll(a, 1, axis=1) a *= np.array(k) ** 2 a[0] = 1 # solve for equal weight indices, ax = b c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() self.m = nn.ModuleList( [nn.Conv2d(c1, int(c_[g]), k[g], s, k[g] // 2, bias=False) for g in range(groups)]) self.bn = nn.BatchNorm2d(c2) self.act = nn.LeakyReLU(0.1, inplace=True)
[docs] def forward(self, x): return x + self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
[docs]class Ensemble(nn.ModuleList): # Ensemble of models def __init__(self): super(Ensemble, self).__init__()
[docs] def forward(self, x, augment=False): y = [] for module in self: y.append(module(x, augment)[0]) # y = torch.stack(y).max(0)[0] # max ensemble # y = torch.stack(y).mean(0) # mean ensemble y = torch.cat(y, 1) # nms ensemble return y, None # inference, train output
[docs]def attempt_load(weights, map_location=None, inplace=True): from yolov5.models.yolo import Detect, Model # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a model = Ensemble() for w in weights if isinstance(weights, list) else [weights]: ckpt = torch.load(attempt_download( w), map_location=map_location) # load model.append(ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()) # FP32 model # Compatibility updates for m in model.modules(): if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model]: m.inplace = inplace # pytorch 1.7.0 compatibility elif type(m) is Conv: m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility if len(model) == 1: return model[-1] # return model else: print(f'Ensemble created with {weights}\n') for k in ['names']: setattr(model, k, getattr(model[-1], k)) model.stride = model[torch.argmax(torch.tensor( [m.stride.max() for m in model])).int()].stride # max stride return model # return ensemble