# Activation functions
import torch
import torch.nn as nn
import torch.nn.functional as F
# SiLU https://arxiv.org/pdf/1606.08415.pdf ----------------------------------------------------------------------------
[docs]class SiLU(nn.Module): # export-friendly version of nn.SiLU()
[docs] @staticmethod
def forward(x):
return x * torch.sigmoid(x)
[docs]class Hardswish(nn.Module): # export-friendly version of nn.Hardswish()
[docs] @staticmethod
def forward(x):
# return x * F.hardsigmoid(x) # for torchscript and CoreML
return x * F.hardtanh(x + 3, 0., 6.) / 6. # for torchscript, CoreML and ONNX
# Mish https://github.com/digantamisra98/Mish --------------------------------------------------------------------------
[docs]class Mish(nn.Module):
[docs] @staticmethod
def forward(x):
return x * F.softplus(x).tanh()
[docs]class MemoryEfficientMish(nn.Module):
[docs] class F(torch.autograd.Function):
[docs] @staticmethod
def forward(ctx, x):
ctx.save_for_backward(x)
return x.mul(torch.tanh(F.softplus(x))) # x * tanh(ln(1 + exp(x)))
[docs] @staticmethod
def backward(ctx, grad_output):
x = ctx.saved_tensors[0]
sx = torch.sigmoid(x)
fx = F.softplus(x).tanh()
return grad_output * (fx + x * sx * (1 - fx * fx))
[docs] def forward(self, x):
return self.F.apply(x)
# FReLU https://arxiv.org/abs/2007.11824 -------------------------------------------------------------------------------
[docs]class FReLU(nn.Module):
def __init__(self, c1, k=3): # ch_in, kernel
super().__init__()
self.conv = nn.Conv2d(c1, c1, k, 1, 1, groups=c1, bias=False)
self.bn = nn.BatchNorm2d(c1)
[docs] def forward(self, x):
return torch.max(x, self.bn(self.conv(x)))
# ACON https://arxiv.org/pdf/2009.04759.pdf ----------------------------------------------------------------------------
[docs]class AconC(nn.Module):
r""" ACON activation (activate or not).
AconC: (p1*x-p2*x) * sigmoid(beta*(p1*x-p2*x)) + p2*x, beta is a learnable parameter
according to "Activate or Not: Learning Customized Activation" <https://arxiv.org/pdf/2009.04759.pdf>.
"""
def __init__(self, c1):
super().__init__()
self.p1 = nn.Parameter(torch.randn(1, c1, 1, 1))
self.p2 = nn.Parameter(torch.randn(1, c1, 1, 1))
self.beta = nn.Parameter(torch.ones(1, c1, 1, 1))
[docs] def forward(self, x):
dpx = (self.p1 - self.p2) * x
return dpx * torch.sigmoid(self.beta * dpx) + self.p2 * x